
MITOCW | L8.2 Asymptotic expansions of Airy functions

PROFESSOR: So we have this integral. And with-- let me go here, actually. With the counter gamma equal to

C1, this counter over here, and the constant c equal to 1. So C1 and the constant c equal to 1.

This psi that we have defined, psi of u, is in fact the airy function of u. A i of u. I is not-- I think I

tend to make that mistake. I doesn't go like a subscript. It's A i like the first two letters of the

name. So that's the function A i of u.

And now you could ask, well, what is the other solution? Now, in fact, this diagram suggests to

you that there's other solutions because you could take other counters and make other

solutions. In fact, yes, there are other ways. For example, if you did a counter-- do I have a

color? Other color? Yes. If you did a counter like this, yellow and yellow, this is not the same

solution. It is a solution because of the general argument and because the endpoints are in

these regions where things vanish at infinity.

So the yellow thing is another solution of the differential equation. So the other airy function is

defined, actually, with this other counter. It's defined by taking the yellow counter like this. This

is going to be called C2. A counter like that. It just comes parallel to this one and then goes

down.

And, actually, in order to have a nicely defined function, one chooses for the function B i of u

the following. Minus i times the integral over the counter C1 of the same integrant. So I will not

copy it. Always the same integrant. Plus 2 i terms the integral over the counter C2 of the same

thing.

So the B i function is a little unusual in that it has kind of a little bit of the A i function because

you also integrate over C1. But you integrate as well over C2. That guarantees that-- actually,

this second airy function behaves similar to A i for negative u, and while A i goes to 0 for

positive u, this one will diverge.

There are expressions for this function. I'll give you an integral. 2 integrals that are famous are

A i of u equals 1 over pi. Integral from 0 to infinity. d k cosine. k cubed over 3 plus k u. And for

B i of u. 1 over pi-- this is a little longer. Integral from 0 to infinity as well. d k. And you have an

exponential of minus k cubed over 3 plus k u, plus the sine of k cubed over 3, plus k u. And

that's it. It's kind of funny. One is the cosine and one is the sine. And it has this extra different

factors.



So these are your two functions. And of the relevance to our w k b problem is that they're

necessary to connect the solutions, as we will see. But we need a little more about these

functions. We need to know there are asymptotic behaviors. Now there are functions, like the

exponential function, that has a Taylor series, e to the z. 1 plus z plus z squared over 2. And

it's valid, whatever these angles-- the argument of z is. That's always the same asymptotic

expansion, or the same Taylor series.

For this functions, like the airy function, for some arguments of u, there's one form to the

asymptotic expansion. And for some other arguments, there's another form. That's sometimes

called the Stokes phenomenon. And for example, the expansion for positive u is going to be a

decaying exponential here. But for negative u, it will be oscillatory.

So it's not like a simple function, like the exponential function has a nice, simple expansion

everywhere. It just varies. So one needs to calculate this asymptotic expansions, and I'll make

a small comment about it of how you go about it. The nice thing about these formulas is that

they allow you to understand things intuitively and derive things yourself.

Here you see the two airy functions. They make sense. The other thing that is possible to do

with this counter representations is to find the asymptotic expansions of these functions. And

they don't require major mathematical work. It's kind of nice.

So let's think a little about one example. If you have the airy function A i of u that is of the form

integral 1 over-- well, it begins v k over 2 pi. The integral over counter C1. Maybe I should

have done them curly. Curly C1 would have been clearer. e to the i. k cubed over 3 plus k u.

That is your integral.

And this is the phase of integration. Phase. Now, in order to find the asymptotic expansion for

this thing, we'll use a stationary phase condition. So the integral is dominated by those places

where the phase is stationary. So the 5 prime of k is k squared plus u. And we want this to be

equal to 0.

So take, for example, u positive. Suppose you want to find the behavior of the airy function on

the right of the axis. Well, this says k squared is equal to u. So k squared is equal to minus u.

And that's-- the right hand side is negative because u is positive. And therefore, k-- the points

where this is solved are k equal plus minus i square root of u. So where are those points in the

k plane? They're here and there. And those are the places where you get stationary phase.



So what can you do? You're supposed to do the integral over this red line. C1. Well, as we

argued, this can be lifted and we can make the integral pass through here. You can now do

this integral over here. It's the same integral that you had before.

In this line, we can say that k is equal to i square root of u plus some extra k tilde. We say here

is i square root of u for u positive. There is this other place, but that-- we cannot bring the

counter down here because in this region, the end points still contribute. So we cannot shift

the counter down, but we can shift it up.

So we have to do this integral. So what happens? You can evaluate that phase 5k under these

conditions. It is a stationary phase point-- this one-- so the answer is going to have a part

independent of k tilde, a linear part, with respect to k tilde that will vanish because at this point

the phase is stationary. And then a quadratic part with respect to k tilde.

So the phase, 5k, which is k cubed over 3 plus k u. When you substitute this k here, it's going

to give you an answer. And the answer is going to be 2 over 3 i u to the 3/2, plus i square root

of u k squared tilde, plus k tilde cubed over 3. That's what you get from the phase.

You say, well, that's pretty nice because now our integral psi has become the integral d k tilde

over 2 pi. So you pass from k to k tilde variable. e to the minus 2/3. u to the 3/2. That is

because you have i times 5k, so you must multiply by i here. Then minus square root of u k

squared. Then plus k cubed. OK. Tildes of course.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Um. Yes. i k. This should be like that. Yes. OK. So now what happens? If u is large enough,

this quantity over here is going to mean that this integral is highly suppressed over k tilde. It's

a Gaussian with a very narrow peak. And therefore, we can ignore this term. This term is a

constant. So what do we get from here? We get 1 over 2 pi from the beginning. This

exponential. e to the minus 2 over 3. u to the 3/2. 3/2. And then from this Gaussian, we get

square root of pi over square root of square root of u. So it's u to the 1/4.

So I think I got it all correct. And therefore, the function A i of u goes like-- or it's proportional to

this decaying exponential. Very fast decaying exponential. 1 over 2. 1 over square root of pi. 1

over u to the 1/4. e to the minus 2/3. u to the 3/2. And this is when u is greater than 0 and, in

fact, u much greater than 1, positive and large.

So this shows you the power of this method. This is a very powerful result. And this is what



So this shows you the power of this method. This is a very powerful result. And this is what

we're going to need, pretty much, now in order to do our asymptotic solutions and the

matching of w k b. There is an extra term, or an extra case, you can consider. What happens

to this integral when u is negative? When u is negative, there's two real roots, and the

stationary points occur on the real line. The integral is, therefore, a little more straightforward.

You don't have to even move it.

And we have another expansion, therefore, which is A i of u is actually equal to 1 over the

square root of pi. 1 over u, length of u to the 1/4. Cosine of 2/3. Length of u to the 3/2 minus pi

over 4. This is for u less than 0. So the airy function becomes an oscillatory function on the

left. So how does this airy function really look like?

Well, we have the true airy function behaves like this. It's a decaying exponential for u positive.

And then a decaying oscillatory function for u negative. For u negative, it decays eventually.

The frequency becomes faster and faster. And that's your airy function A i of u. Here is u.

Your asymptotic expansions, the ones that we found up there for u greater than 1, match this

very nicely. But eventually they blow up, so they're a little wrong. And they actually match here

quite OK. But here they go and also blow up because of this factor. So they both blow up, but

they're both quite wrong in this area, which you would expect them to be wrong. These are the

regions where this two asymptotic expansions make no sense. They were calculated on the

hypothesis that u is much bigger than 1, or much less than 1. Minus 1. And therefore, you get

everything under control except this area. So now let's do the real work of w k b. That was our

goal from the beginning, so that's what we'll try to do now.


