
MITOCW | L21.2 Phase shifts and impact parameter

PROFESSOR: Let's then try to understand intuitively some issues with phase shift. And that, I think, is pretty

valuable. One shouldn't rush through these things. I'm going to erase this formula already. It's

a little messy. It's not like you're going to use it ever. You could use that formula if you were to

compute higher phase shifts. But at least this homework, you don't have that.

So let's try to understand a little what phase shifts do for you. Phase shifts are useful when the

first few phase shifts dominate the cross section. If you have to do this sum for all values of l, it

can get very difficult. So if the answer really necessitates the tail of l going to infinity, it's hard.

So in general, we find that phase shifts are useful when the first few dominate the cross

section. So phase shifts are useful if the first few dominate sigma.

And that will tend to happen when k a is much less than 1.

And this will happen in that case. That will be our argumentation. We will try to explain why

when k a is less than 1, this will happen. So what is k a less than 1? Well, it could be that a is

very small. So one possibility is short range, which means a small compared to other scales,

and maybe there is a problem. Or the other possibility is that low energy. That is, k is small,

because energy goes like k squared. If k is small, it's low energy.

So these are the possibilities that would allow us to have a situation where only the first few

phase shifts contribute to the cross section. So let's see why that is the case and what is the

intuition for this. This happens for-- I think I want to add here this happens when-- so the claim

above happens when k a is less than 1.

Let's have a picture of this. Consider an incident particle on a potential. So here is a potential.

Here is r equals 0 and this is the potential. Maybe some region-- here's an incident particle

coming in with some momentum. So these ideas are semi-classical ideas on how I'm looking

at this particle coming with some impact parameter. b is this distance to the center, the

maximum-- the closest approach of the particle to the potential. That's called the impact

parameter. And it has momentum p. So b is the impact parameter and p is the momentum.

And then, what is the angular momentum of this particle with respect to the origin? Is r cross p.

And so the angular momentum l is equal to bp.

OK. So now I'm going to try to make sense of this equation and get an estimate, considering



our situation. So what is our situation? In our situation, when we consider a partial wave

expansion, we're considering waves with different values of the orbital angular momentum l.

So when we consider a little l, we're really saying that the angular momentum is proportional to

hl, where l is the quantum number. Number. The number that we're fixing here each time we

talk about the partial wave.

Moreover, if we're asking about the momentum, we know what is the typical momentum of

these waves-- it's hk.

So if I substitute those two pieces of information into the relation of the angular momentum

here-- so l is equal to hl and b multiplies h bar k, we get that the impact parameter can be

visualized as l over k.

It's a somewhat classical intuition. But it gives you an idea. As you're increasing l, you're

increasing the impact parameter intuitively. A partial wave scattering process with l reflects the

input parameter. If l is equal to 0, you're hitting the object right on.

And now, you can say, all right, if b is greater than a, where a is the range of the potential--

range-- there should be little or no scattering. So if b is greater than a, is little or no scattering.

That's intuitively clear from the range of the potential. If the input parameter is much bigger.

So this means l greater than k a, there is no scattering. And this physically-- this is classical

intrusion suggests that the contribution to scattering from l's bigger than k a is negligible.

There's no scattering.

So this is saying that sigma-- how should I say it? The delta l-- I'll just say delta l's are small or

very small-- small-- for l greater than k a. The delta l, the phase shifts, enter here, as sine

squared of the phase shifts. So they must be very small, because they just pretty much don't

contribute.

This is intuition we were claiming up there. If k a is rather small, very few phase shifts will

contribute. Because as soon as your l is bigger than k a, you get nothing. If k a is much less

than 1, only l equals 0 will contribute. If k a is 1 or 2, it's-- I think I would write here, if-- we don't

have to be very small, but around 1, very few will contribute. Or essentially, you could say that

all the l less than k contribute. They contribute. So even if k a, say, was 5, you could hope that

the l's up to 5 will be a big contribution. And after that, they start to fall off.

OK. So that's one intuition into the l's. Second piece of intuition comes from the solutions that



you have of the real equation. So it's interesting, actually. Let's look at our partial waves

directly.

Second intuition for this fact-- think of your solution Jl of kr, Yl of theta. This is a solution.

Represents a partial wave. It's the one that doesn't diverge at the origin. So that makes some

sense. It represents a free wave, but still is giving us an intuition of how this partial wave is

supposed to behave. So I would like to have an intuition of how big is this function and where it

is big.

So this is a solution of the radial equation. A radial equation with no potential. That doesn't

mean zero effective potential, because there's always the centrifugal barrier. So this is the

solution. Solution of the v equals 0 radial equation, which has a potential, which is v effective is

h squared, l times l plus 1 over 2mr squared. That's the effective potential. And it's a solution

with energy h squared, k squared, over 2m.

So here is r. Here is the effective potential. And how does it look? Well, it diverges and then

falls off. And you have a solution with energy equal h squared, k squared, over 2m. It's a

solution of that problem with that potential. So here is your intuition.

This solution encounters a barrier here. So it must be exponentially suppressed in this

distance. It will be exponentially suppressed as you go below this turning point. Therefore, this

partial wave will be 0 for some radius smaller to a certain distance here. And that's back of our

intuition. If you have some impact parameter this large, you have no support over distances

smaller than your impact parameter. There's no wave there. The wave stays away.

So what we want to show is that this wave stays away from the center r equals 0, again, by a

quantity related to this thing. So what do we get? Well, we can solve for the turning point. So h

squared l, l plus 1 over 2mr star squared-- I can call this r star-- is equal to h squared, k

squared, over 2m. Lots of things cancel. 2m's, h squared. So you get kr star squared is

roughly equal to l times l plus 1. And here, I can approximate and I can say that kr star is

roughly l. That's the leading order square root.

And therefore, the wave function vanishes. This Jl of kr must be quite approximately 0 for r

less than r star equal l over k, which is the impact parameter.

So we know because this must be exponentially suppressed, that the wave function must be

very much 0 here. And that the radial wave function is this. So you have derived that the Jl of



kr is essentially 0 for r less than this r star, which is about l over k, that we identified after

impact parameter. So our ideas are consistent. This partial wave doesn't reach the origin. It

stays a bit the way. How much? The intuition is that the distance approximate to the input

parameter, which is l divided by k.

OK. So that's another piece of intuition. There's one more classical intuition that they think it's

interesting. It's very surprising, actually, this third one, this semi-classical intuition into what

these things are. But they're important because the subject of phase shift seems very

technical. But the phase shifts have important meaning and those partial waves are

interesting. So let's do one more way of thinking about these matters.

OK. So I'd say, recall this equation. Sigma is given by the total cross section-- three-- the total

cross section is given by this sum. So sigma is the sum of sigma l's. And that's a nice notation.

This is the stigma associated with each partial wave. No, it's a good thinking. And the sigma l

is equal to 4 pi over k squared, 2l plus 1, sine squared of delta l.

Now, just from this formula, when somebody gives you a sigma l, you can know whether

they're making sense or not, because there is a test, at least. Sigma l is always less than or

equal to 4 pi over k squared times 2l plus 1. And this just comes because sine squared is less

than or equal to 1. So it's a good test. People say, oh, I found the partial cross section given by

this for that partial wave. Well, it better satisfy that, otherwise, you've done a wrong calculation.

Some people call this partial wave unitarity. Unitarity has to do with conservation of probability

and cross sections have that thing. It's a probability to scatter in some direction, in some

measure. So this is called partial wave unitarity. Wave unitarity.

It's interesting that these ideas have a connection in classical physics, again, that allow you to

think of, actually, physically about these processes in a way that illuminates what's happening

quantum mechanically. So here is how you can think of this. We have, again-- I'll do a nice

picture. I'll try at least. A source here and there's a potential. And now I'm going to come at

some impact parameter. But let me think of it as coming-- here is the cylinder of impact

parameters. If you come anywhere on the surface of this cylinder, you'll have input parameter

b-- b is here.

Now, let's fit in the cylinder. I'll fit in the cylinder. To make it of thickness delta b. Thickness. So

the thickness is delta b. And you now consider all these particles that are going to come in

here and scatter.



Now, in classical physics, you know it's easy or reasonable to track things, because everything

is deterministic. So I can imagine very well that this shell just goes here. And it becomes a

shell here of particles that are going off at some angles. So, like a trumpet. This comes like

that and spreads out here. And all these particles get scattered. Deterministically, that's

reasonable. You have a charge here, for example, and these are charged particles. They

repel and they get scattered like that.

So you could say, OK, this contribution is going to go into a particular angle, the omega. So I

can think of this as contributing to the differential cross section at an angle omega, or some

contribution to the total cross section that would come from integrating and adding up all these

contributions as you vary this thing.

So if I want to compute how much this contributes to the cross section-- estimate the classical

contribution. Estimate the classical contribution d sigma to sigma from a single partial wave--

single partial wave-- if I consider a partial wave with some value of l. Think of a partial wave

with a fixed value of l. Then, I have fixed the impact parameter. If I change l by one unit, the

impact parameter changes a little bit. Think of this as the b of a given l-- b of a given l. And this

delta b or db-- I'll call it delta b with capital. Delta b. As they change in b for delta l equal 1.

You see, each partial wave corresponds to a different l. Classically, there's no quantization. So

I must think of an impact parameter. And the partial wave corresponds to the thickness of this

thing when the thickness will correspond to a change of b, because l has changed one. So you

can think of concentric cylinders. The l equals 0 partial wave, the l equal 1 partial wave, all of

those are cylinders. And they all contribute areas. This is the area that is going to get-- all the

particles are going to scatter. So this little thin cross-sectional area here is the contribution to

the differential cross section from this partial wave in the classical approximation.

So let's do this. So b of l is equal to l over k. And delta b is the change in b when l changes by

1. So delta b is 1 over k. So what is the differential cross section? The classical-- classical-- it's

this area. This is the area of the beam that is going to be scattered in that partial wave. So it's

going to be 2 pi b delta b. And this is 2 pi l over k times 1 over k. And that's not so bad.

This is-- I'll write it as 1 over 4, 4 pi over k squared-- the k squared came out right-- times 2l. I

wrote it like that because-- here it is-- what the quantum theory tells you the partial wave

contribution to the cross section is 4 pi over k squared 2l plus 1. That's pretty much it. And the

classical estimate gives you one fourth of that.



classical estimate gives you one fourth of that.

So pretty nice that everything works out. And that there is a correspondence. And there is a

way to estimate partial contributions to the cross section from classical arguments. So that's

our discussion of the physics of phase shifts and the physics of input parameters and l and

your intuition that you must have to them.


