
Chapter 8

Identical Particles

c© B. Zwiebach

Two particles are identical if all their intrinsic properties (mass, spin, charge, magnetic
moment, etc.) are the same and therefore no experiment can distinguish them. Of course,
two identical particles can have different momentum, energy, angular momentum. For
example all electrons are identical, all protons, all neutrons, all hydrogen atoms are identical
(the possible excitation states viewed as energy, momentum, etc.)

8.1 Identical particles in Classical Mechanics

We can assign a labeling of the particles and follow through. Results are labeling indepen-
dent.

As shown in Fig.8.2 we have two cases:

• Case 1: Assume we solve the dynamics and find

r1(t) = r(t) with r(t0) = r0

r2(t) = r′(t) with r′(t0) = r′0

• Case 2: Since the particles are identical the Hamiltonian must make this clear

H(r1,p1; r2,p2) = H(r2,p2; r1,p1) (8.1.1)

This time, when we solve

r1(t) = r′(t) with r′(t0) = r′0

r2(t) = r(t) with r(t0) = r0

The two descriptions are equivalent. We can follow the particles and the particle that
started at {r0,p0} will be at r(t), while the one that started at {r′0,p′0} will be at r′(t).

In conclusion, we choose one labeling, just as if the particles were different. Follow
through without regard to other possible labeling.
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Figure 8.1: Example of two different ways of labeling the initial state

8.2 Identical particles in Quantum Mechanics

8.2.1 Exchange degeneracy

If we cannot follow particles once they overlap and/or collide, we can’t know what alternative 
took place.

Question: How to write kets for the initial and final states?

Simpler case to see the complications Let there be two spin-1/2 particles. Consider only 
their spin1, one is |+〉, the other |−〉. Recall tensor product |vi〉(1) ⊗ |vj 〉(2) describing 
particle 1 in state vi and particle 2 in state vj . More briefly |vi〉(1) ⊗ |vj 〉(2) ≡ |vi〉 ⊗ |vj 〉
with the understanding that the first ket is for particle 1 and the second for particle 2. 
What is the state of the two spin 1/2 particles?

|+〉(1) ⊗ |−〉(2) or |−〉(1) ⊗ |+〉(2) (8.2.1)

A priori either one! This, despite the fact that in our conventions for inner products these
two states are orthogonal! Can we declare these states to be physically equivalent and thus
solve the ambiguity? No. If the two states above are equivalent we would have to admit
that even the states

|ψ〉 = α|+〉 ⊗ |−〉+ β|−〉 ⊗ |+〉 (8.2.2)

1in this approximation we could say that they are static and very close to each other, even on top of each
other
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Figure 8.2: Example of two different processes involving identical particles. In principle, in 
quantum mechanics it is impossible to tell which one happened.

with |α|2 + |β|2 = 1 for normalization, are equivalent. This ambiguity in the specification 
of a state of identical particles is called exchange degeneracy.

What is the probability to find these particles in the |+, χ〉 ⊗ |+, χ〉 state?
This states is

|ψ0〉 =
1√
2

(
|+〉(1) + |−〉(1)

)
⊗ 1√

2

(
|+〉(2) + |−〉(2)

)
=

1

2

(
|+〉(1) ⊗ |+〉(2) + |+〉(1) ⊗ |−〉(2) + |−〉(1) ⊗ |+〉(2) + |−〉(1) ⊗ |−〉(2)

)
(8.2.3)

the probability is ∣∣∣〈ψ0|ψ〉
∣∣∣2 =

∣∣∣1
2

(α+ β)
∣∣∣2 (8.2.4)

thus a tremendous ambiguity because the chosen values of α, β matter!
Three particle degeneracy; 3 different eigenstates |a〉, |b〉, |c〉 give the following combinations

|a〉(1) ⊗ |b〉(2) ⊗ |c〉(3) , |a〉(1) ⊗ |c〉(2) ⊗ |b〉(3) ,

|b〉(1) ⊗ |c〉(2) ⊗ |a〉(3) , |b〉(1) ⊗ |a〉(2) ⊗ |c〉(3) ,

|c〉(1) ⊗ |a〉(2) ⊗ |b〉(3) , |c〉(1) ⊗ |b〉(2) ⊗ |a〉(3) .



154 CHAPTER 8. IDENTICAL PARTICLES

8.2.2 Permutation operators

Two particle systems

Consider the case when the vector space V relevant to the particles is the same for both 
particles, even though the particles may be distinguishable. Call the particles 1 and 2. 
Consider the state in which particle one is in state ui and particle 2 in state uj

|ui〉(1) ⊗ |uj〉(2) ∈ V ⊗ V (8.2.5)

Since the particles are possibly distinguishable note that

|ui〉(1) ⊗ |uj〉(2) 6= |uj〉(1) ⊗ |ui〉(2) . (8.2.6)

Define P̂21 the linear operator on V ⊗ V such that

P̂21

[
|ui〉(1) ⊗ |uj〉(2)

]
≡ |uj〉(1) ⊗ |ui〉(2) . (8.2.7)

note that

P̂21P̂21 = 1 , (8.2.8)

i.e. P̂21 is its own inverse. Claim

P̂ †21 = P̂21 , Hermitian

Proof: First of all let’s recall that for a generic operator Ô, the adjoint of Ô

(8.2.9)

is defined s.t.

〈α|Ô†|β〉 = 〈β|Ô|α〉 (8.2.10)

In our case, not writing the subscript labels,

〈uk| ⊗ 〈u`|P̂21|ui〉 ⊗ |uj〉 = 〈uk| ⊗ 〈u`|
(
|uj〉 ⊗ |ui〉

)
= δkjδ`i

〈uk| ⊗ 〈u`|P̂ †21|ui〉 ⊗ |uj〉 =
(
〈ui| ⊗ 〈uj |P̂21|uk〉 ⊗ |u`〉

)∗
=
[
〈ui| ⊗ 〈uj |

(
|u`〉 ⊗ |uk〉

)]∗
=
[
δi`δjk

]∗
= δkjδ`i

hence

P̂ †21 = P̂21 X . (8.2.11)

Because of (8.2.8) we also have that P̂21 is unitary:

P̂ †21P̂21 = P̂21P̂21 = 1 . (8.2.12)

Given a generic state |ψ〉 it is not clear a priori what would it be its behaviour under
the action of P̂21, hence to make our life easier we want to rewrite a generic state |ψ〉 in
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terms of eigenstates of P̂21.
We can define two eigenstates of P̂21 with the following properties

P̂21|ψS〉 = |ψS〉 Symmetric state

P̂21|ψA〉 = −|ψA〉 Antisymmetric state

and two operators Ŝ and Â

Ŝ ≡ 1

2
(1+ P̂21) , Â ≡ 1

2
(1− P̂21) . (8.2.13)

Note that Ŝ and Â are such that

P̂21Ŝ =
1

2
(P̂21 + P̂21P̂21) =

1

2
(P̂21 + 1) = Ŝ

P̂21Â =
1

2
(P̂21 − P̂21P̂21) =

1

2
(P̂21 − 1) = −Â

Therefore, given a generic state |ψ〉 we have that

P̂21Ŝ|ψ〉 = Ŝ|ψ〉 =⇒ Ŝ|ψ〉 is symmetric

P̂21Â|ψ〉 = −Â|ψ〉 =⇒ Â|ψ〉 is anti-symmetric.

Because of this, the Hermitian operators Ŝ and Â are called symmetric/antisymmetric
projectors. From a mathematical point of view Ŝ and Â are orthogonal projectors2 and
satisfy

Ŝ2 = Ŝ , Â2 = Â , Ŝ + Â = 1 , ŜÂ = ÂŜ = 0 . (8.2.15)

Action on operators Let B(n) be an operator acting on the n-th vector space, i.e.

B(1)|ui〉(1) ⊗ |uj〉(2) =
(
B|ui〉

)
(1)
⊗ |uj〉(2)

B(2)|ui〉(1) ⊗ |uj〉(2) = |ui〉(1) ⊗
(
B|uj〉

)
(2)

then the action of P̂21 on B(1) is

P̂21B(1)P̂ †21|ui〉(1) ⊗ |uj〉(2) = P̂21B(1)|uj〉(1) ⊗ |ui〉(2)

= P̂21

(
B|uj〉

)
(1)
⊗ |ui〉(2) = |ui〉(1) ⊗

(
B|uj〉

)
(2)

= B(2)|ui〉 ⊗ |uj〉

(8.2.16)

2A projector P : V → U ⊂ V is orthogonal if V = kerP ⊕ range P , with kerP ⊥ range P . Take v ∈ V ,
then

v = Pv︸︷︷︸
rangeP

+ v − Pv︸ ︷︷ ︸
kerP

= u+ w (8.2.14)

where w ∈ kerP , u = Pv ∈ rangeP , then kerP ⊥ rangeP because

〈w, u〉 = 〈w,Pv〉 = 〈P †w, v〉 = 〈Pw, v〉 = 〈0, v〉 = 0
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hence

P̂21B(1)P̂ †21 = B(2) (8.2.17)

Similarly we have
P̂21B(2)P̂ †21 = B(1) (8.2.18)

and if we consider a generic operator Θ̂(1, 2), then

P̂21Θ̂(1, 2)P̂ †21 = Θ̂(2, 1) . (8.2.19)

Note that if Θ̂(1, 2) = Θ̂(2, 1) we say Θ̂(1, 2) is symmetric. If an operator is symmetric then

0 = P̂21Θ̂(1, 2)P̂ †21 − Θ̂(1, 2)

0 = P̂21Θ̂(1, 2)− Θ̂(1, 2)P̂21

0 = [P̂21, Θ̂(1, 2)] (8.2.20)

[P̂21, Θ̂(1, 2)] = 0 ⇐⇒ Θ̂ is symmetric . (8.2.21)

N particle systems

In a N particle system we can define N ! permutation operators P̂i1,...,iN , with P̂12...N being
the identity. For a 3-particle system, for example, the operator Pnpq acting on a state has
the effect of

n→ 1 n− th state moved to position 1

P̂npq means p→ 2 p− th state moved to position 2

q → 3 q − th state moved to position 3

e.g.
P̂231|ui〉(1) ⊗ |uj〉(2) ⊗ |uk〉(3) = |uj〉(1) ⊗ |uk〉(2) ⊗ |ui〉(3) (8.2.22)

You should check that its inverse is P̂312, so that

P̂231P̂312 = 1 . (8.2.23)

More formally we can define a permutation of N numbers by the function α that maps the
standard ordered integers 1, . . . , N into some arbitrary ordering of them

α : [1, 2, . . . , N ]→ [α(1), α(2), . . . , α(N)] (8.2.24)

and associate it with a permutation operator

P̂α ≡ P̂α(1), α(2), ..., α(N) (8.2.25)

P̂α|u1〉(1) ⊗ · · · ⊗ |uN 〉(N) = |uα(1)〉(1) ⊗ · · · ⊗ |uα(N)〉(N) (8.2.26)
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For example

P̂3142|u1〉(1) ⊗ |u2〉(2) ⊗ |u3〉(3) ⊗ |u4〉(4) = |u3〉(1) ⊗ |u1〉(2) ⊗ |u4〉(3) ⊗ |u2〉(4) (8.2.27)

or
P̂3142|a〉(1) ⊗ |b〉(2) ⊗ |c〉(3) ⊗ |d〉(4) = |c〉(1) ⊗ |a〉(2) ⊗ |d〉(3) ⊗ |b〉(4) (8.2.28)

The set of all permutations of N objects forms the symmetric group SN and it has N !
elements. For S3 we have 6 elements or the 6 permutation operators:

P̂123︸︷︷︸
1

cyclic→ P̂312
cyclic→ P̂231 , P̂132

cyclic→ P̂213
cyclic→ P̂321︸ ︷︷ ︸

these are transpositions,
a permutation in which only
2 particles are exchanged
without affecting the rest

P̂132 is a transposition in which the states of the second and third particles are exchanged
while the first particle is left unchanged. For transpositions we sometimes use the notation
where we just indicate the two labels that are being transposed. Those two labels could be
written in any order without risk of confusion, but we will use ascending order:

(12) ≡ P213

(13) ≡ P321

(23) ≡ P132

(8.2.29)

While all permutations that are transpositions are Hermitian (see the proof for P̂21 that
easily generalizes), general permutations are not Hermitian. It is intuitively clear that any
permutation can be written as product of transpositions: any set of integers can be reordered
into any arbitrary position by transpositions (in fact by using transpositions of consecutive
labels). The decomposition of a permutation into a product of transpositions is not unique,
but it is unique (mod 2). Hence we have that every permutation is either even or odd. A
permutation is said to be even if it is the product of an even number of transpositions, and
it is said to be odd if it is the product of an odd number of transpositions.

Since transposition operators are and unitary any permutation is a unitary operator. All
transpositions are also Hermitian, but an arbitrary product of them is not hermitian be-
cause the transpositions do not necessarily commute.

In fact, the Hermitian conjugate of a permutation is its inverse, which is a permutation
of the same parity. This is clear from writing P̂α as a product of transpositions Pti :

P̂α = P̂t1P̂t2 . . . P̂tk

P̂ †α = P̂ †tk . . . P̂
†
t2
P̂ †t1 = P̂tk . . . P̂t2P̂t1 (8.2.30)

and therefore
=⇒ P̂αP̂

†
α = 1 (8.2.31)
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Theorem 8.2.1. The number of even permutations is the same as the number of odd 
permutations

Proof. Consider the map that multiplies any permutation by (12) from the left (12) : 
Peven → Podd so that if σ ∈ Peven then (12)σ ∈ Podd. This map is one to one

(12)σ = (12)σ′ =⇒ σ = σ′ , (8.2.32)

by multiplying from the left by (12), which is the inverse of (12). This map is also surjective
or onto:for any β ∈ Podd, we have β = (12) (12)β︸ ︷︷ ︸

∈Peven

.

A\B P̂312 P̂231 (23) (12) (13)

P̂312 P̂231 1 (12) (13) (23)

P̂231 1 P̂312 (13) (23) (12)

(23) (13) (12) 1 P̂231 P̂312

(12) (23) (13) P̂312 1 P̂231

(13) (12) (23) P̂231 P̂312 1

Table 8.1: A · B matrix for S3.

Complete symmetrizer and antisymmetrizer

Permutation operators do not commute, so we can’t find complete basis of states that are 
eigenstates of all permutation operators. It is possible, however, to find some states that 
are simultaneous eigenvectors of all permutation operators.

Consider N particles, each with the same vector space. Let P̂α be an arbitrary permutation, 
then

Symmetric state |ψS〉 : P̂α|ψS〉 = |ψS〉 ∀α
Antisymmetric state |ψA〉 : P̂α|ψA〉 = εα|ψA〉

where

εα =

{
+1 if P̂α is an even permutation

−1 if P̂α is an odd permutation
(8.2.33)

In the total Hilbert space V ⊗N ≡ V ⊗ · · · ⊗ V︸ ︷︷ ︸
N

, we can identify a subspace SymNV ⊂ V ⊗N

of symmetric states and a subspace AntiNV ⊂ V ⊗N of antisymmetric states. Can we
construct projectors into such subspaces?
Yes!

Ŝ ≡ 1

N !

∑
α

P̂α and Â ≡ 1

N !

∑
α

εαP̂α (8.2.34)
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where we sum over all N ! permutations. Ŝ is called the symmetrizer and Â is called the
antisymmetrizer.

Claim: Ŝ = Ŝ† Â = Â† (8.2.35)

Hermitian conjugation of P̂α gives P̂−1
α which is even if P̂α is even and odd if P̂α is odd.

Thus Hermitian conjugation just rearranges the sums, leaving them invariant.
Moreover

P̂α0Ŝ = ŜP̂α0 = Ŝ (8.2.36)

P̂α0Â = ÂP̂α0 = εα0Â (8.2.37)

Proof. Note that P̂α0 acting on the list of permutations simply rearranges the list, given

two permutations Pγ1 6= Pγ2 then P̂α0Pγ1 6= P̂α0Pγ2 , hence

P̂α0Ŝ = P̂α0

1

N !

∑
α

P̂α =
1

N !

∑
α

P̂α0P̂α =
1

N !

∑
β

P̂β = Ŝ X ( .2.38)

analogously

P̂α0Â = P̂α0

1

N !

∑
α

εαP̂α =
1

N !

∑
α

εαP̂α0P̂α =
1

N !

∑
α

εα εα0εα0︸ ︷︷ ︸
=1

P̂α0P̂α

=
εα0

N !

∑
α

εαεα0P̂α0P̂α =
εα0

N !

∑
β

εβP̂β = εα0Â X (8.2.39)

Finally they are projectors

Ŝ2 = Ŝ , Â2 = Â , ŜÂ = ÂŜ = 0 (8.2.40)

Ŝ2 =
1

N !

∑
α

P̂αŜ =
1

N !

∑
α

Ŝ =
1

N !
N ! Ŝ = Ŝ X (8.2.41)

Â2 =
1

N !

∑
α

εαP̂αÂ =
1

N !

∑
α

εαεαÂ =
1

N !

∑
α

Â =
1

N !
N ! Â = Â X (8.2.42)

ÂŜ =
1

N !

∑
α

εαP̂αŜ =
1

N !

∑
α

εαŜ =
Ŝ

N !

∑
α

εα = 0 X (8.2.43)

Since, as explained before there are equal numbers of even and odd permutations, i.e.∑
α εα = 0.

Note that
Ŝ|ψ〉 ∈ SymNV since P̂αŜ|ψ〉 = Ŝ|ψ〉 ∀α (8.2.44)

and analogously
Â|ψ〉 ∈ AntiNV since P̂αÂ|ψ〉 = εαÂ|ψ〉 ∀α (8.2.45)

Hence, they are, as claimed, projectors into the symmetric and antisymmetric subspaces:

Ŝ : V ⊗N → SymNV , Â : V ⊗N → AntiNV (8.2.46)

8
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Example: N = 3 For S3 we have 6 elements or the 6 permutation operators:

P̂123 = 1 , P̂312 , P̂231 , P̂132 , P̂213 , P̂321

In this case the symmetrizer and antisymmetrizer operators Ŝ and Â are

Ŝ = 1
6(1 + P̂312 + P̂231 + P̂132 + P̂213 + P̂321) (8.2.47)

Â = 1
6(1 + P̂312 + P̂231 − P̂132 − P̂213 − P̂321) (8.2.48)

Note that

Ŝ + Â = 1
3(1 + P̂312 + P̂231) 6= 1 = P̂123 (8.2.49)

This is a manifestation of the fact that in general for N > 2, we have

SymNV ⊕AntiNV ⊂ V ⊗N (8.2.50)

i.e. in principle, the N -particle Hilbert space is not spanned by purely symmetric or anti-
symmetric states.
We define Θ(1, 2, . . . , N) to be a completly symmetric observable if

[Θ(1, 2, . . . , N), P̂α] = 0 ∀α (8.2.51)

8.3 The symmetrization postulate

In a system with N identical particles the states that are physically realized are not ar-

bitrary states in V ⊗N , but rather they are totally symmetric (i.e. belong to SymN V ), in 
which case the particles are said to be bosons, or they are totally antisymmetric (i.e. belong 
to AntiN V ) in which case they are said to be fermions.

Comments:

1. The above is a statement of fact in 3D. Alternative possibilities can happen in worlds
with 2 spatial dimensions (anyons)

2. The postulate describes the statistical behaviour of bosons and of fermions

3. Spin-statistics theorem from Quantum Field Theory shows that bosons are particles
of integer spins (0, 1, 2, . . . ) while fermions are particles of half-integer spin (1/2, 3/2
, . . . )

4. The symmetrization postulate for elementary particles lead to a definite character, as
bosons or fermions, for composite particles, which in turn obey the symmetrization
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postulate. Take for example two hydrogen atoms

The system is made by 4 particles and its total wavefunction is Ψ(p1, e1; p2, e2). Since
the two electrons are identical particles of spin 1/2, the wavefunction must be anti-
symmetric under the exchange e1 ↔ e2

Ψ(p1, e2; p2, e1) = −Ψ(p1, e1; p2, e2) . (8.3.1)

Exactly the same argument applies to the protons,

Ψ(p2, e1; p1, e2) = −Ψ(p1, e1; p2, e2) . (8.3.2)

Therefore under the simultaneous exchange

Ψ(p2, e2; p1, e1) = +Ψ(p1, e1; p2, e2) . (8.3.3)

The exchange i n (8.3.3) corresponds to p1 ↔ p2 and e1 ↔ e2, an exchange of the two 
hydrogen atoms! Since the wavefunction i s symmetric under this exchange, (8.3.3) 
shows that the hydrogen atom is a boson!

5. The symmetrization postulate solves the exchange degeneracy problem.

Say |u〉 ∈ V ⊗N represents mathematically a state. Let V|u〉 ≡ span
{
P̂α|u〉 ,∀α

}
.

Depending on |u〉 the dimension of V|u〉 can go from 1 to N !. This dimensionality, if
different from one, is the degeneracy due to exchange.

The exchange degeneracy problem (i.e. the ambiguity in finding a representative for
the physical state in V|u〉) is solved by the symmetrization postulate by showing that

V|u〉 contains, up to scale, a single ket of SymNV and a single ket of AntiNV .

Proof. Suppose we have two states |ψ〉, |ψ′〉 ∈ V|u〉 that both happen to be symmetric:

|ψ〉, |ψ′〉 ∈ SymNV . We can write them as

|ψ〉 =
∑
α

cαPα|u〉 and |ψ′〉 =
∑
α

c′αPα|u〉 (8.3.4)
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with cα, c′α some coefficients. Then, since |ψ〉 ∈ SymNV

|ψ〉 = Ŝ|ψ〉 = Ŝ
∑
α

cαPα|u〉 =
∑
α

cαŜPα|u〉 =
∑
α

cαŜ|u〉 = Ŝ|u〉
∑
α

cα . (8.3.5)

Analogously

|ψ′〉 = Ŝ|u〉
∑
α

c′α . (8.3.6)

Hence |ψ〉 ∝ |ψ′〉, the states are the same up to scale.

6. Building antisymmetric states.

Constructing the three-particle state Â|u〉 with |u〉 ∈ V ⊗3 given by

|u〉 = |ϕ〉(1) ⊗ |χ〉(2) ⊗ |ω〉(3) (8.3.7)

The claim is that the antisymmetric state is constructed by a determinant:

Â|u〉 = 1
3!

∑
α

εαP̂α|ϕ〉(1) ⊗ |χ〉(2) ⊗ |ω〉(3) = 1
3!

∣∣∣∣∣∣∣∣∣∣
|ϕ〉(1) |ϕ〉(2) |ϕ〉(3)

|χ〉(1) |χ〉(2) |χ〉(3)

|ω〉(1) |ω〉(2) |ω〉(3)

∣∣∣∣∣∣∣∣∣∣
(8.3.8)

When writing the products in the determinant one must reorder each term to have
the standard order |· 〉(1) ⊗ |· 〉(2) ⊗ |· 〉(3). You can confirm you get the right answer.
Now do it generally. Recall the formula for the determinant of a matrix

det B̂ =
∑
α

εαBα(1),1Bα(2),2 . . . Bα(N),N (8.3.9)

Let |ω〉 be a generic state ∈ V ⊗N

|ω〉 = |ω1〉(1)|ω2〉(2) . . . |ωN 〉(N) (8.3.10)

then
P̂α|ω〉 = |ωα(1)〉(1)|ωα(2)〉(2) . . . |ωα(N)〉(N) (8.3.11)

so that

Â|ω〉 =
1

N !

∑
α

εαP̂α|ω〉 =
1

N !

∑
α

εα|ωα(1)〉(1)|ωα(2)〉(2) . . . |ωα(N)〉(N) . (8.3.12)

If we define a matrix
ωij ≡ |ωi〉(j) (8.3.13)

then

Â|ω〉 =
1

N !

∑
α

εαωα(1),1ωα(2),2 . . . ωα(N),N =
1

N !
det(ω) (8.3.14)
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i.e.

Â|ω〉 =
1

N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|ω1〉(1) |ω1〉(2) . . . |ω1〉(N)

|ω2〉(1) |ω2〉(2) . . . |ω2〉(N)

...
...

|ωN 〉(1) . . . . . . |ωN 〉(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(8.3.15)

(8.4.1)

8.4 Occupation numbers

Consider a system of N identical particle. Basis states in V ⊗N take the form

|ui〉(1) ⊗ . . . |up〉(N)

where the one-particle states form an orthonormal basis of V :

V = span{|u1〉, |u2〉, . . . } (8.4.2)

By applying Ŝ or Â to the full set of states in V ⊗N we obtain all physical states in SymNV
and AntiNV . But many different states in V ⊗N can give rise to the same state in SymNV
and AntiNV after the application of the projectors.

To distinguish basis states in V ⊗N that after application of Ŝ or Â are linearly indepen-
dent, define the occupation number. We assign a set of occupation numbers to a basis state
|·〉 ⊗ · · · ⊗ |·〉. An occupation number is an integer ni ≥ 0 associated with each vector in V :

|u1〉
n1

, |u2〉
n2

, . . . , |uk〉
nk

, . . . (8.4.3)

We define nk to be the number of times that |uk〉 appears in the chosen basis state
|·〉 ⊗ · · · ⊗ |·〉. Thus, by inspection of the state |·〉 ⊗ · · · ⊗ |·〉 we can read all the occu-
pation numbers n1, n2, · · · . It should be clear that the action of a permutation operator on
a basis state in V ⊗N will not change the occupation numbers.

Two basis states in V ⊗N with the same occupation numbers can be mapped into each
other by a permutation operator; they lead to the same state in SymNV and to the same
state (up to a sign) in AntiNV . Two basis states in V ⊗N with different occupation numbers
cannot be mapped into each other by a permutation operator. They must lead to different
states in SymNV and to different states in AntiNV , unless they give zero.

Given the occupation numbers of a basis state, we denote the associated basis state in
SymNV as follows

|n1, n2, . . . 〉S ni ≥ 0 (8.4.4)
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Explicitly
|n1, n2, . . . 〉S ≡ cS Ŝ |u1〉 . . . |u1〉︸ ︷︷ ︸

n1 times

⊗ |u2〉 . . . |u2〉︸ ︷︷ ︸
n2 times

⊗ . . . (8.4.5)

where cS is a constant that is used to give the state unit normalization. More briefly we
write

|n1, n2, . . . 〉S ≡ cS Ŝ |u1〉⊗n1 ⊗ |u2〉⊗n2 ⊗ . . . ( .4.6)

where |ui〉⊗ni is equal to 1 when ni = 0 These states form an orthonormal basis in SymNV :

S〈n′1, n′2, . . . |n1, n2, . . . 〉S = δn1,n′1
δn2,n′2

. . . (8.4.7)

The space SymNV relevant to identical bosons is spanned by all the states

|n1, n2, . . . 〉 with
∑
k

nk = N (8.4.8)

The space AntiNV relevant to identical fermions is spanned by all the states

|n1, n2, . . . 〉A with
∑
k

nk = N and nk ∈ {0, 1} , (8.4.9)

since occupation numbers cannot be greater than one (any state with an occupation number
two or larger is killed by Â). We have

|n1, n2, . . . 〉A ≡ cA Â |u1〉⊗n1 ⊗ |u2〉⊗n2 ⊗ . . . (8.4.10)

where cA is a constant that is used to give the state unit normalization. These states form 
an orthonormal basis in AntiN V .

8.5 Particles that live in V ⊗ W

A particle may have space degrees of freedom, described by a vector space V and spin degree 
of freedom associated with W . Suppose we have a state than of 2 such particles described 
in (V ⊗ W )⊗2 for example

|ψ〉 = |vi〉(1) ⊗ |wi〉(1) ⊗ |vj〉(2) ⊗ |wj〉(2) + . . . (8.5.1)

This ψ should belongs either to Sym2(V ⊗ W ) or to Anti2(V ⊗ W ). The permutation
operator here that exchange particles 1 and 2 is

P̂3412|ψ〉 = P̂3412

(
|vi〉(1)⊗|wi〉(1)⊗|vj〉(2)⊗|wj〉(2)

)
= |vj〉(1)⊗|wj〉(1)⊗|vi〉(2)⊗|wi〉(2) ( .5.2)

Wanto to express this in terms of Sym2V , Anti2V , Sym2W , Anti2W .
Why? Because it is possible: for any state

. . .
W

|a〉 . . .
W

|b〉 =
1

2

(
. . . |a〉 . . . |b〉+ . . . |b〉 . . . |a〉

)
︸ ︷︷ ︸

∈ Sym2W

+
1

2

(
. . . |a〉 . . . |b〉 − . . . |b〉 . . . |a〉

)
︸ ︷︷ ︸

∈Anti2W

(8.5.3)

8

8
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Thus we can assume we work with simultaneous eigenstates of P̂3214, which exchanges the
V states, and of P̂1432, which exchanges the W states. Note that

P̂3412 = P̂3214P̂1432 (8.5.4)

where the order is not important since [P̂3214, P̂1432] = 0.
The eigenvalues are

P̂3214 P̂1432 P̂3412

1 1 1
−1 −1 1
1 −1 −1
−1 1 −1

This means that

Sym2(V ⊗W ) '
(
Sym2V ⊗ Sym2W

)
⊕
(
Anti2V ⊗Anti2W

)
(8.5.5)

Anti2(V ⊗W ) '
(
Sym2V ⊗Anti2W

)
⊕
(
Anti2V ⊗ Sym2W

)
(8.5.6)

where with ' we indicate

|vi〉(1) ⊗ |wi〉(1) ⊗ |vj〉(2) ⊗ |wj〉(2) ' |vi〉(1) ⊗ |vj〉(1) ⊗ |wi〉(2) ⊗ |wj〉(2) . (8.5.7)

The generalization to 2 particle belonging to (U ⊗ V ⊗W ) is simple, for 3 or more particle
is more complicated.

Example. Two electrons with spin wavefunction

Ψ(x1,m1; x1,m2) = φ(x1, x2) · χ(m1,m2) Ŝz = m~ (8.5.8)

χ can be some normalized state in the space spanned by the triplet and the singlet. The
probability dP to find one electron in d3x1 around x1 and in d3x2 around x2 is

dP = |φ(x1,x2)|2d3x1d3x2 (8.5.9)

Assume for simplicity that the electrons are non interacting so that the Schrödinger equation[
− ~2

2m
∇2

x1
+ V (x1)− ~2

2m
∇2

x2
+ V (x2)

]
Ψ = EΨ (8.5.10)

is separable, so there is a solution of the form ψA(x1)ψB(x2) with∫
d3x |ψA(x)|2 = 1 ,

∫
d3x |ψB(x)|2 = 1 ,

∫
d3xψ∗A(x)ψB(x) = αAB 6= 0

(8.5.11)
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By Schwarz’s inequality |〈u, v〉| ≤
√
〈u, u〉

√
〈v, v〉 we have∫

d3xψ∗A(x)ψB(x) = |〈ψA, ψB〉| ≤
√
|〈ψA, ψA〉|

√
|〈ψB, ψB〉| =⇒ |αAB| ≤ 1 (8.5.12)

But then must build

φ±(x1,x2) =
N±√

2

(
ψA(x1)ψB(x2)± ψA(x2)ψB(x1)

)
(8.5.13)

with N± a real normalization constant.

Take the following combination of φ and χ:

φ+ · χsinglet so that the total wavefunction is antisymmetric

φ− · χtriplet any of the 3 states of the triplet

Again, the probability to find one electron in d3x1 around x1 and in d3x2 around x2 is

dP± = |φ±(x1,x2)|2d3x1d3x2

=
N±√

2

{
|ψA(x1)ψB(x2|2 + |ψA(x2)ψB(x1)|2 ± 2<

[
ψ∗A(x1)ψA(x2)ψ∗B(x2)ψB(x1)

]︸ ︷︷ ︸
Exchange density

}
d3x1d3x2

(8.5.14)

If we take the case x1 = x2 = x, we get

dP± = N±

{
|ψA(x)ψB(x)|2 ± |ψA(x)ψB(x)|2

}
d3x1d3x2

=⇒ dP+ = 2N±|ψA(x)ψB(x)|2d3x1d3x2 (8.5.15)

dP− = 0 (8.5.16)

Recall that P+ is associated with the singlet, while P− with the triplet. Therefore electrons
avoid each other in space when they are in the triplet state. In the singlet states there is
enhanced probability to be at the same point.
Note that normalization requires

1 =
N2
±

2

∫
d3x1d3x2

{
|ψA(x1)ψB(x2|2 + |ψA(x2)ψB(x1)|2 ± 2<

[
ψ∗A(x1)ψA(x2)ψ∗B(x2)ψB(x1)

]}
=
N2
±

2

{
1 + 1± 2<

[∫
d3x1 ψ

∗
A(x1)ψB(x1)

∫
d3x2 ψ

∗
B(x2)ψA(x2)

]}
= N2

±

{
1±< [αAB · α∗AB]

}
= N2

±

(
1± |αAB|2

)
=⇒ N± =

1√
1± |αAB|2

(8.5.17)
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So

dP+ =
2

1± |αAB|2
|ψA(x)ψB(x)|2d3x1d3x2 (8.5.18)

to be compared with

dPD = |ψA(x)|2|ψB(x)|2d3x1d3x2 (8.5.19)

for distinguishable particles.

Since from (8.5.12) we have |αAB < 1|, then

dP+ ≥ dPD (8.5.20)

Assume ψA(x) is nonzero only in a region RA, ψB(x) is nonzero only in a region RB and
RA ∩RB = 0, then

αAB =

∫
d3xψ∗A(x)ψB(x) = 0 (8.5.21)

since ψA requires x ∈ RA and ψB requires x ∈ RB. Therefore in this case N± = 1.
Then the probability to find an electron in d3x1 around x1 ∈ RA and another in d3x2

around x2 ∈ RB is

dP± =
{
|ψA(x1)ψB(x2|2 + |����ψA(x2)����ψB(x1)|2 ± 2<

[
ψ∗A(x1)����ψA(x2)ψ∗B(x2)����ψB(x1)

]
d3x1d3x2

= |ψA(x)|2|ψB(x)|2d3x1d3x2 = dPD (8.5.22)

it is the probability density for distinguishable particles.
Therefore, there is no need to symmetrize or antisymmetrize the wavefunction of non over-
lapping localized particles.

8.6 Counting states and distributions

Ei energy of the i-th level, di degeneracy of the i-th level. Assume we have N particles 
and we want to place N1 particles in level 1, . . . , Ni particles in level i (Ei, di). Let’s call 
Q(N1, N2, . . . ) the number of ways to do this.
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8.6.1 Distinguishable particles (Maxwell Boltzman)

Split N into N1, N2, . . . in N !
N1!N2!... ways (imagine putting them on a line . . .︸︷︷︸

N1

. . .︸︷︷︸
N2

after

drawing one ball at a time). Placing Ni particles in di slots gives (di)
Ni ways, therefore

Q(N1, N2, . . . ) = N !
∏
i

(di)
Ni

Ni!
Maxwell Boltzman

8.6.2 Identical fermions

Splitting the N states into groups for identical particles can only be done in one way

Ni < di

how many ways to place them?

di choose Ni =
di

Ni!(di −Ni)!

=⇒ Q(N1, N2, . . . ) =
∏
i

di
Ni!(di −Ni)!

8.6.3 Identical bosons

Ni particles!

Ni balls and (di − 1) bars,

for example:

How many ways to order the Ni + di − 1 objects? (Ni + di − 1)! but we must divide by the
irrelevant permutations, hence

Q(N1, N2, . . . ) =
∏
i

(Ni + di − 1)!

Ni!(di − 1)!
(8.6.1)

This is for bosons:
Q(N1, N2, . . . ) counts the number of ways to have N particles and fixed energy E =∑

iNiEi. Want to find the values of N1, N2, . . . that are most likely.
Want to maximize Q(N1, N2, . . . ) under the constraint that N =

∑
iNi and E =

∑
iNiEi.

Maximizing Q is the same as maximizing lnQ and using lagrange multipliers

f(N1, N2, . . . ) = lnQ(N1, N2, . . . ) + α(N −
∑
i

Ni) + β(E −
∑
i

NiEi) (8.6.2)
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Do the fermion one, using QF from (8.6.1) we have

lnQF =
∑
i

ln di!− lnNi!− ln(di −Ni)! (8.6.3)

Since all these quantities di, Ni are large we can use the Stirling approximation

lnn! ' n lnn− n (8.6.4)

so that

lnQF =
∑
i

di ln di−��di−Ni lnNi+��Ni−(di−Ni) ln(di−Ni)+��di−��Ni =
∑
i

di ln di−Ni lnNi−(di−Ni) ln(di−Ni)

(8.6.5)
Minimizing w.r.t. to Ni without constraints,

d

dNi
lnQF = − lnNi − �1 + ln(di −Ni) + �1 = ln

(
di −Ni

Ni

)
. (8.6.6)

so that, adding the lagrange multipliers, we have

∂f

∂Ni
= ln

(
di −Ni

Ni

)
− α− βEi =⇒ di −Ni

Ni
= eα+βEi =⇒ di = Ni

(
eα+βEi + 1

)
=⇒ Ni =

di
eα+βEi + 1

(8.6.7)

α and β can be calculated using the equations
∑

iNi = N and
∑

iNiEi = E:

α ≡ −µ(T )

kBT
, β ≡ 1

kBT
definition of temperature (8.6.8)

then

Ni =
di

e
Ei−µ(T )

kBT + 1

(8.6.9)

The expected occupation number n ∼ Ni
di

for a single state is

n =

(
e
E−µ(T )
kBT + 1

)−1

Fermi-Dirac distribution

For bosons we have

n =

(
e
E−µ(T )
kBT − 1

)−1

Bose-Einstein distribution

Since n ≥ 0 we need E > µ for all energy levels µ < Ei ∀i. For an ideal gas µ(T ) < 0 ∀T ,
i.e. α > 0

For fermions
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Figure 8.3: Occupation number for a state as a function of the energy for a system of identical 
fermions in the T → 0 limit. µ(T = 0) = EF is called the Fermi energy.

Figure 8.4: Chemical potential µ as a function of the temperature for a system of identical 
bosons. TC , the critical temperature is defined to be the temperature such that µ(TC ) = 0 
and it’s the temperature for Bose-Einstein condensation

Figure 8.5: Chemical potential µ as a function of the temperature for a system of identical 
fermions.

Aside from statistical mechanics

µ =
∂E

∂N

∣∣∣∣
S,V

keeping constant entropy may require lowering the energy (8.6.10)

Suppose we add a particle with no energy to the system. S will increase (more ways to
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divide up the total energy) for this not to happen, must reduce the energy.

dE(V, S) = TdS − PdV + µdN

= d(TS)− SdT − PdV (8.6.11)

d (E − TS)︸ ︷︷ ︸ = −SdT − PdV + µdN

F (T, V ) = E − TS . (8.6.12)

µ is an intensive quantity, and in terms of F we have

µ =
∂F

∂N

∣∣∣∣
T,V

Adding a particle changes
the energy and the entropy (8.6.13)
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