Reversed Cherenkov Radiation in Left-Handed Meta-material

8.07 Lecture, Nov 21, 2012 Prof. Min Chen

8.07 is not just an abstract theory; it is a tool which can be applied to change the world around you.

Example: Left-Handed Meta-material

1. Introduction

What are Metamaterials?

Engineered (at the atomic level) materials that have unique properties not found in nature due to the arrangement and design of their constituents.

Image by MIT OpenCourseWare.

1. Introduction

Overview of materials

Image by MIT OpenCourseWare. FIG. 3. The material parameter space.

What is LH material? Refraction of RH and LH material

Figure 1.3: Refraction of an electromagnetic wave at the interface between two different media. (a) Case of two media of same handedness (either RHM or LHM): positive refraction. (b) Case of two media of different handedness (one RHM and the other one LHM): negative refraction.

LH e Refraction

This image has been removed due to copyright restrictions.

Application example 2 of LH material Superprism

Image by MIT OpenCourseWare.

Application example 3 of LH material Flat Lens

Figure 1.4: Double focusing effect in a "flat lens", which is a LHM slab of thickness d and refractive index n_L sandwiched between two RH media of refractive index n_R with $n_L = -n_R$.

Electron lens, prism and splitter

This image has been removed due to copyright restrictions.

8.07 lecture on natural magnetized material: from m_{micro} to M_{macro} to J Microscopicelly, Minicro (F) = Z min 83(v-v.) $\vec{M}_{macro}(\vec{r}) = \vec{M}(\vec{r}) = \langle \vec{M}_{micro}(\vec{r}) \rangle$ <> > = average over precion large compared to atoms, but small compared to the scale over which macroscopic quantities vary R is center of averaging region Then $\vec{J}_{micro}(\vec{r}) = -\sum \vec{m}_n \times \vec{\nabla}_{\vec{r}} S^3(\vec{r} - \vec{r}_n)$ $\hat{\mathcal{T}}_{micn}(\vec{r}) = \vec{\nabla}_{x} \sum \vec{m}_{n} S^{3}(\vec{r} - \vec{r}_{n})$ $\frac{=}{\sqrt{3}} \frac{\nabla \times \vec{M}_{micno}(\vec{r})}{\sqrt{3}} = - \frac{\nabla \times \vec{M}_{icno}(\vec{r})}{\sqrt{3}} = \frac{\nabla \times \vec{M}_{icno}(\vec{r})}{\sqrt{3}}$

Index of refraction n Polarize Atoms to make dipoles:

Wave speed = $c/n' = \sqrt{(\epsilon_r \mu_r)}$

 $(\varepsilon_{eff} - \varepsilon_o) \quad \mathbf{E} = \mathbf{P}$

real part of n $n' = \sqrt{\mu_{\perp} \epsilon_{\parallel_{a}}} > 1$

Image by MIT OpenCourseWare.

Man made atomic dipoles

Image by MIT OpenCourseWare.

To make artificial material with n < 0

Make new atoms using driven-resonance LRC- circuits

 $m_{micro} = IA$ to obtain M_{macro}

- Calculate inductance L and capacitance C
- Calculate induced complex resonance current Imicro
- Calculate
- and $B = \mu_o (H + M)$
- Obtain permeability $B/H = \mu = \mu_r + i \mu_i$
- Similarly permittivity $D/E = \varepsilon = \varepsilon_r + i \varepsilon_i$
- Pick regions with real negative permittivity and negative permeability, i.e. $\epsilon_r < 0$ and $\mu_r < 0$; note $\epsilon_i > 0$ and $\mu_i > 0$
- Obtain negative Index of refraction $n^2 = \epsilon_r \mu_r$, $n = -\sqrt{(\epsilon_r \mu_r)}$

How to make LH material? Maxwell Eqs. In material free of q, j $\varepsilon_0 \nabla \cdot \vec{\mathbf{E}} = \rho = - \nabla \cdot \vec{\mathbf{P}}$ $\mu_{eff} = \langle B \rangle / \langle H \rangle$ $\mu_0 \nabla \cdot \vec{\mathbf{H}} = \rho_H = - \nabla \cdot \mu_0 \vec{\mathbf{M}}$ $(\varepsilon_{eff} - \varepsilon_o) E = P = J/i\omega$ $\nabla \times \vec{\mathbf{E}} + \mu_0 \frac{\partial \vec{\mathbf{H}}}{\partial t} = -\mathbf{J}_{\mathbf{M}} = -\mu_0 \frac{\partial \vec{\mathbf{M}}}{\partial t}$ real part of n $n' = -\sqrt{\mu_{\perp} \epsilon_{\parallel}}$ $\nabla \times \vec{\mathbf{H}} - \boldsymbol{\varepsilon}_0 \frac{\partial \vec{\mathbf{E}}}{\partial t} = \mathbf{J} = \frac{\partial \vec{\mathbf{P}}}{\partial t}$

Left Handed Meta-material:

Use L, R, C devices smaller than wavelengths to make new '*molecules*', with novel properties of **P** and **M**

Energy and Momentum flow

Figure 1.1: Orientation of field quantities \vec{E} , \vec{H} , Poynting vector \vec{S} , and wavevector number $\vec{\beta}$ in right-handed media (RHM) and left-handed media (LHM).

Maxwell Eqs

Separate into *L* and *l* components

• 3 × 3 complex matrix μ and ϵ diagonized $\mu = diag \left[\mu_{\parallel} \ \mu_{\perp} \ \mu_{\parallel} \right]$

• Transverse B_{\perp} depends on only μ_{\perp}

Maxwell Eqs in Cylindrical symmetric geometry Separate into *1* and *||* components $k_s \times H_\perp = -\omega \epsilon_{\parallel} E_{\parallel}$ and k $k_s \times E_{\parallel} = \omega \mu_{\perp} H_{\perp}$ F $\mu_{\perp}, \epsilon_{\parallel}$ are negative E_{\parallel} , H_{\perp} , and k_s form a left-handed triad

Poynting & wave vector in *1 and || c*omponents Poynting vector S ks Poynting vector $(S) = (E_{\parallel} \times H_{\perp} \times) = |E_s|^2 2\omega \mu_{\perp} k_s$ opposite to the wave vector k_s for a negative μ_{\perp} ,

representing a backward propagating wave

Negative index of refraction

The Helmholtz wave equation gives,

$$k_s = \frac{\omega n}{c}$$

where the real refractive index

$$n = \pm \sqrt{\frac{\mu_{\perp} \mathcal{E}_{||}}{\mu_0 \mathcal{E}_0}}$$

For passive media The imaginary μ and ϵ and n > 0, $e^{ik x} = e^{(i n_r - n_i) \omega x/c}$ Thus - sign for *n*.

(-1+ i a) (-1 + ib) ~ 1 - i (a + b)

$$n = \pm \sqrt{\frac{\mu_{\perp} \varepsilon_{||}}{\mu_0 \varepsilon_0}}$$

For passive media The imaginary μ and ϵ and n > 0, Thus - sign for *n*.

Cherenkov Radiation

Generated by objects moving faster than the wave speed in the medium,

 $v > c/n = \omega/k = (\omega/k_0)/n$

Examples:

- Sonic boom generated by a supersonic jet
- Wakes from a speedy boat
- Blue light when comic rays going through closed eyes

Cherenkov Radiation for n=2 and $v_p = \omega/k = c/2$

 $\theta = \cos^{-1}[c/(nv)]$ with n>1 $\theta = \cos^{-1}[c/(nv)]$ with n<-1

V. G. Veselago, *Sov. Phys. Usp.* 10, 509 (1968). Cerenkov Radiation in Materials with Negative Permittivity and Permeability J. Lu, T. Grzegorczyk, Y. Zhang, J. Pacheco Jr., B.-I. Wu, J. A. Kong, and M. Chen Optics Express 11, 723-734 (2003)

Forward Cherenkov Radiation in RH material

Wave front \perp V of Energy flow & wave vector k

Reversed Cherenkov Radiation in LHM

26

Reversed Cherenkov Radiation in LHM

> Two puzzling issues: Apparent Violation of

 Energy-momentum conservation

Causality

Momentum & energy conservation?

Energy Density and Flux

Poynting's theorem in material:

$$\nabla \cdot \boldsymbol{E} \times \boldsymbol{H} = - \frac{\partial}{\partial t} (1/2 \{ \epsilon_0 E^2_+ \mu_0 H^2 \} \}$$
$$- \mathbf{E} \cdot \frac{\partial}{\partial t} \mathbf{P} - \mathbf{H} \cdot \frac{\partial}{\partial t} \mathbf{M}$$

To get time averaged EM energy density

$$=1/2\{\frac{\partial(\omega\epsilon)}{\partial\omega}E^{2}+\frac{\partial(\omega\mu)}{\partial\omega}H^{2}\}$$

Complex EM energy density
$$W=1/4\{\frac{\partial(\omega\epsilon)}{\partial\omega}E\cdot E^{*}+\frac{\partial(\omega\mu)}{\partial\omega}H\cdot H^{*}\}$$

Momentum and Poynting vectors in a dispersive medium

In isotropic LHM, average momentum density

$$\begin{split} \langle \overline{G} \rangle &= \frac{1}{2} \mathbf{Re} \{ \overline{D} \times \overline{B}^* + \frac{\overline{k}}{2} \left(\frac{\partial \overline{\epsilon}}{\partial \omega} \overline{E} \cdot \overline{E}^* + \frac{\partial \overline{\mu}}{\partial \omega} \overline{H} \cdot \overline{H}^* \right) \} \\ &= \frac{1}{2} \mathbf{Re} \{ \frac{1}{2} \frac{\overline{k}}{\omega} (\overline{D} \cdot \overline{E}^*) + \frac{1}{2} \frac{\overline{k}}{\omega} (\overline{B} \cdot \overline{H}^*) + \frac{\overline{k}}{2} \left(\frac{\partial \overline{\epsilon}}{\partial \omega} \overline{E} \cdot \overline{E}^* + \frac{\partial \overline{\mu}}{\partial \omega} \overline{H} \cdot \overline{H}^* \right) \} \\ &= \frac{1}{4} \mathbf{Re} \{ \frac{\overline{k}}{\omega} \left[(\overline{\epsilon} + \omega \frac{\partial \overline{\epsilon}}{\partial \omega}) \overline{E} \cdot \overline{E}^* + (\overline{\mu} + \omega \frac{\partial \overline{\mu}}{\partial \omega}) \overline{H} \cdot \overline{H}^* \right] \} \\ &= \frac{W}{\omega} \overline{k} = \hbar \overline{k} \, \mathsf{N} \end{split}$$

<G> is along the k direction and opposite to the Poynting vector.

T. Musha, Proceedings of the IEEE 60, 12 (1972).

LH-Photon momentum anti-parallel to energy flow

Causality: Cherenkov radiation

Energy flow, Wave vector, Phase front, Wake front, for charge at t3

Forward Cherenkov Radiation in RH material obeys causality

Wake front || Wave front \perp V of Energy flow & wave vector k

Reversed Cherenkov Radiation in

Left-handed medium also

New '*molecules*' for $\mu_{\varphi} < 0$, & ϵ_r , $\epsilon_z < 0$

Configuration of the TM-LHM for experiment. In the top view, the dark (light) gray trips represent the copper printed on the top (bottom) of the substrate

Split Resonant rings SRR

- External $B_{o or} H_{o}$ penetrates metal rings to induce I
- I produces $H_i = FJ$ to enhance or oppose H_o , <u>dipolar</u>.
- Resonant $\lambda_o >> d$
- Small gaps between the rings -> large C -> lower ω_o
- Low loss, and high quality
- At $\omega > \omega_{o}$, real $\mu_{eff} = \langle B \rangle / (\langle H \rangle * \mu_{o}) = H_{o} / H_{ext} < -1$
- Used with the negative ϵ_r of split orthogonal wires to produce negative refractive index.
New **molecules** for $\mu_{\varphi} < 0, \& \epsilon_{\rho}, \epsilon_z < 0$

Configuration of the TM-LHM for experiment. In the top view, the dark (light) gray strips represent the copper printed on the top (bottom) of the substrate

Magnetic response

*H*₀: incident magnetic field*J*: induced current per unit lengthFields inside and outside of the loop:

 $H_{ext} = H_0 - FJ$,

$$H_{in} = H_0 + J - FJ$$
, and $F = fraction of area inside loop Total flux is constant J$

M = FJ

$$\mu_{eff} = \langle B \rangle / \langle H \rangle = \mu_0 H_0 / H_{ext}$$

$$\mu_{eff} = \mu_0 \left(1 - \frac{\omega^2 F L_y / (L_y + L_i)}{\omega^2 - \omega_0^2 + i\omega\Gamma} \right)$$

Magnetic response

$$\frac{\mu_{eff}}{\mu_0} = 1 - \frac{\omega^2 F L_g / (L_g + L_i)}{\omega^2 - \omega_0^2 + i\omega\Gamma}$$

For perfect conductor, $\Gamma = 0$, real $\mu_{eff} < 0$ for $\omega_0 \le \omega \le \omega_0 / \sqrt{[1 - FL_g/(L_g + L_i)]}$ where

$$\begin{split} \omega_0 &= 1/\sqrt{(L_g + L_i)C} & \text{resonance frequency} \\ L_g &= \mu_0 l^2/h \text{ geometric} \\ L_i &= 4l/(\epsilon_0 d_c t_m \omega_{ip}^2) & \text{intrinsic} \end{split}$$

Scale the molecular dimensions by 1/1000, ω increase by ~900

Electrical response

Compute L, C to relate E and J of the wires and use

 $\mathbf{J} = \frac{\partial \mathbf{P}}{\partial t}$ $(\varepsilon_{eff} - \varepsilon_o) E = P = J/i\omega$ $\varepsilon_{eff} = \varepsilon_d \left(1 - \frac{\omega_p^2}{\omega^2 + i\omega_\gamma} \right)$ real $\varepsilon_{eff} < 0$ for $\omega < \omega_{p}$ ε_{d} : permittivity of substrate

1

$$\omega_p^2 = \frac{2\sqrt{2}\pi c^2}{\epsilon_d ha \ln[h/(2t_m)]}$$

$$\gamma = \frac{\sigma t_m d_c}{\ln[h/(2t_m)]}$$

40

Unique design \rightarrow clean signals

The constitutive parameter tensors $\epsilon = diag[\epsilon_{//} \epsilon_{\perp} \epsilon_{//}] = diag[\epsilon_{eff} \epsilon_{d} \epsilon_{eff}]$ $\mu = diag[\mu_{//} \mu_{\perp} \mu_{//}] = diag[\mu_{0} \mu_{eff} \mu_{0}]$ real part of n: $n' = -\sqrt{\mu_{\perp} \epsilon_{\parallel}}$

The transmission properties of a TM wave normally incident onto a 7-cell slab-like sample. The periodicity along *y*-axis is h = 1.64 mm.

The periodicity along the y axis is h =1:64 mm. (b) The normalized far-field pattern of the prism experiment at 8.5 and 12 GHz, respectively.

- (a) Experimental setup to demonstrate reversed Cherenkov radiation. A slot waveguide is used to model a fast charged particle. The prism-like metamaterial is used to filter the Reversed Cherenkov wave.
- (b) Sum of the radiation power in each angle in the negative refraction band and positive refraction band.

Application of RCR 1: THz radiation sources filling the gap between optical and electronic devices

FIG. 2. The power of solid state devices and optical sources vs. frequencies.

analysis

2. Theoreti

We describe a new method to generate intense terahertz (THz) surface wave (SW) and reversed Cherenkov radiation (RCR) using a sheet beam bunch traveling parallel to and over a half space filled with double-negative metamaterial (DNM).

direction.

Vacuum $|E_i|$ FIG. 6. The schematic of a sheet beam bunch moving with speed $\overline{\upsilon}$ in vacuum parallel to and over a half space filled with DNM, showing the resultant radiation patterns of the RCR and SW.

2. Theoretical analysis

FIG. 7. (a) A sketch view of the unit cell structure formed by fixing a metal SRR and thin wire on two faces of a dielectric substrate. (b) A perspective view of an isotropic DNM formed by periodic unit cells.

3. Numerical results

FIG. 8. (a) The relative permittivity and permeability as functions of frequency.

3. Numerical results

FIG. 9. (a) The relative permittivity and permeability as functions of frequency for three values of the DNM loss. (b) The RCR energy and the time-averaged Poynting vector at x = -d/2 as functions of the DNM loss, respectively.

3. Numerical results

FIG. 10. The effects of the charged particle number N (a) and the transverse dimension $2y_0(b)$ on the amplitude of the SW in region 1 and on the RCR energy in region 2, respectively.

Application of RCR 2

The only known EM process capable of detecting invisible cloaks

Invisible Cloaks made of LH light guides

This image has been removed due to copyright restrictions.

Application: Detect invisibility cloak

using Cherenkov radiation

This image has been removed due to copyright restrictions. Please see Figure 1 on http://prl.aps.org/pdf/PRL/v103/i24/e243901.

Baile Zhang, Bae-Ian Wu, Phys. Rev. Lett. 103, 2009

This image has been removed due to copyright restrictions. Please see Figure 2 on http://prl.aps.org/pdf/PRL/v103/i24/e243901.

 $|E_{tot}(\vec{r},t)|$ during the radiation from a charged particle going through a spherical invisibility cloak. The dotted line represents the trajectory of the particle. The small arrow indicates the exact position of the particle' s center along its trajectory. The inner radius and outer radius of the cloak are 1 and 2 µm, respectively. The net charge corresponds to 1000 electrons. V=0.9c.

Detect a perfect invisible cloak

This image has been removed due to copyright restrictions. Please see Figure 3 on http://prl.aps.org/pdf/PRL/v103/i24/e243901.

Conclusion on

Reversed Cherenkov Radiation in LHM:

- Energy-momentum conservation
- Causality
- New molecules for TM waves
- Experimental verification
- Future improvements
- New window of Applications

Reversed Cherenkov radiation New window of Applications

- Particle ID: photons opposite to charged particles so interference is minimized.
- LHM can be isotropic, anisotropic, bi-anisotropic--flexible
- CR without threshold using utilizing anisotropic LHM, As observed in metallic grating and photonic crystals
- Strong velocity sensitivity and good radiation directionality
- Measuring intensity, detecting labeled biomolecules
- Detecting invisible cloaks
- New radiation sources

End of the lecture.

MIT OpenCourseWare http://ocw.mit.edu

8.07 Electromagnetism II Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.