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Group velocity:

V, . velocity to convey energy

Anomalous dispersion

V, can be Negative, zero or > c
V, & V,in different directions Vv,

Signal velocity still < ¢

Solid line: A wave packet.
Dashed line: The envelope of the wave packet.
The envelope moves at the group velocity
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Electromagnetic Plane Waves

Maxwell Eaguations 1n Empty Space:
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REVIEW-MW-EQ-WAVE--SOL-S

Energy and Momentum:
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Momentum flux =
DxB (c/n)=S/(c/n)



Given E
find B, S, intensity and power

sin #

E(r.0.0,t)=A

[cos(kr — wt] — (1/kr) sin(kr — wt)]d , with % —

&
2 (This is, incidentally, the simplest possible spherical wave. For notational conve-
nmience, let (kr — wt) = u in your calculations.)

(a) Show that E obeys all four of Maxwell's equations, in vacuum, and find the
associated magnetic field.
(b) Calculate the Poynting vector. Average 5 over a full cycle to get the intensity

vector I. (Does it point in the expected direction? Does it fall off like r—2, as
it should?)

(c¢) Integrate I - d@ over a spherical surface to determine the total power radiated.
[Answer: 4w A2 /3ugc]

Given B?
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Potentials

B=VxA, K=

1"
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gauge transformation:

A= AT St —
PROBLEM 4: GAUGE CHOICES A=ALVA, V= at

Grifhiths Problem 10.7 (p. 422).

In Chapter 5, I showed that it is always pmhlhle to plclc a vector potential whose
divergence is zero (Coulomb gauge). Show that it is always possible to choose V-A=
—ppen(0V/0t), as required for the Lorentz gaugﬂ assuming yvou know how to solve
always pUEElhlE‘ to pick V' = 0? How about A = 0?

equations of the form 10.16. IsAi
Solution: 2= A+ delh = > A = _div A

Problem 10.7 av : T
Suppose V-A #£ -_uucuﬂ— (Let T."’ A, + 'HUEUEE_ = $—some known function.] We want to pick A such
that A" and V' {(Eq. 10.7) do uhnaf}g:..¢-".'-"«A = — g€ aﬂ‘:
, gy ; av & A 5
V-A +mcnﬁ—? A4V A+mcna —-pnfnﬂti =@+ [\

This will be zero provided we pick for A the solution to 0%\ = —&, which by hypothesis (and in fact) we know
how to solve.

We could always find a gauge in which V' = 0, simply by picking A = f; Vdt'. We cannot in general pick
A = 0—this would make B = 0. [Finding such a gauge function would amount to expressing A as — VA, and
we know that vector functions ecannot in general be written as gradients—only if they happen to have curl
zero, which A (ordinarily) does net.)

13



Boundary Conditions
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Reflections, transmission, pressure

Incident wave {2 < G):

E}{L’ f} = fﬂ-}; 2 {’fi(}gi Bt s Problem 9.34
Bele ) — 1 i iy it} 2 :
rle,t) = - Lin.1 ¥ . }_, A
i )
,.-f - I
— . >
fransmitted wave {2 > Gk y"’
i 3

f’f
= F i) -~ J i e
Ei_g{::f} f‘g; T f‘F(k i i /r @ i// L

WLJ

= i . .
Brlzt) =~ Egpethe=etly
(H5

w must be the same on both sides, so

' » ' . { E”:z “_EI NI "5‘{1 B”:z t) _E 1‘[.‘-'|-.‘--:..-'H:r‘,.
— = i L . il il T Sl L En(z,t) = Ege'' 5%t g Bg(z,t) = ——fi-'.'il‘?’r'_k::_'"“!r"-
L 1 it ’ fi?-‘u - iz ] . _ )
NPT { E.(z,t) = Beltasu g, B, (z,t) = LB eharwtly
Ei(z,t) = Bpetl~F2-wl %, Bylz,t) = — - Eeflhi-wi g,
:>d: { ]_'ETI:E,.’.] = .I':_.']"r:"“"” =t I:lT[E.I] = 11F J’E:-,r-ri":':’“* wi) 7.

fﬂ-’{},n Sy fugr . boundary? Use
Momentum flux = DxB (c/n)=S/(c/n)

Tt - 1o

: ( s ) What is the pressure on each of the

15



. 1
Solution to O“V = ——p

Method: Guess o solution and then show that 1t works,
We know that

g i o I ret
VYV ame—e—p — Vih= f{ii s P71

€43 T Amey [ -] h

We try the gf){%

S I ey 1 { §F }
vV =-—p = VIF 8 = / e ;{3 } :

! ' ' 4.’?’5"(-‘_{; 1? o ’_i’*i
where
|7 — 7 ,
t, o= o = retarded time.
¢
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i
Solution to O°V == — p

€g

Method: Guess a selution and then show that it worlks.,

YWe kniow that
. i o i w L oplF
ViV = —-—p = ViF ) = / {i"ﬂﬁ"% .
€43 ‘4—.’.":"'{"_{; 3';'“ R 1
YWe try the guess

g I . 1 . A
My = —-——p = Vir. ) = {i"{:i_?‘fifi i ) X
L ) ' 4—.’,"5"{-"_{; 3?“ P “”i

wheoere

¥

|7 — 7

fpe = + = retarded time.

e

‘ Retarded Time Scolutions I

To differentiate, S /‘{i%, S 1) Gauge
use change of inva nant?

variables . 1 / 3,0 FOF 1)
- gy =,
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Problem 10.8 . .
From the product rule: Retarded A Lorenz Gauge invariant?

?-(1)=-{?J}+J ( 1 N (J)=-{‘F’J}+J ( 1).

But?lz-‘F- sinceca=r -1, Sn/ \/

v*e) —(T-'J] 7. (vl —{vJ}+ {‘F"J}
out 8,  8J,  8J. _8J.0t. 8,8t  8J. o
v.y =t v s = Uz Uty y Ot OJ: Oir
oz Oy ' 0z ot Oz | B, dy | Ot 9z
d
: e 10 2 _10v O 15 tr=t -ric
dr ~ cdz' Oy  cdy 0z  cdoz
S0
1[80, 8 8,8 8J, & 183
Vel = - [at,ar+a:,3_y+at,ﬁ =—za, (V)
Similarly,
, ap 181 _,
Ly = —2E - 220 (W),
J(r’, tr) Vi = —a - om (V)

[The first term arises when we differentiate with respect to the Eﬂ:pﬁcﬂ‘ r', and use the continuity equation.]

thus
ANRY La1 /o 12 g ()
v'(?)_l_ cat, ﬁ‘/] EI at cﬂ/v ] 1::' ) T b

(the other two terms cancel, since Wa = —V'a). Therefore:

_ Mo [ ’ - _ a |I5' _ o !
v.A-dr | fv ( )dT] . pﬂ{ﬂqﬂ'f [dzrr-e..;.[ ] 4 A da.

av
Th= last term is over the suface at “infinity”, where J = 0, so it’s zero. Therefore VA = =ppeg=—=. ¢

at
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Review-radiation-dipole-V

‘ Electric Dipole Radiation I

Simplest dipole: two tiny metal spheres|
separated by a distance d aleng the
z-axis, connected by a wire, with| |« “
charges { '
~g Sz
N\
(1 = an coslwt (r v
gt} = qo cos{wl) (3) d
on the top sphere, and ¢4} = i
A, s
—gy coslw?} on the bottom sphere. |

Image by MIT OpenCourseWare.

Then
VE D I [gpeosiw(t — ay/e)]  goeosw(t — . fe)]
CAT L o -
' ' drmen Ay A
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Review-radiation-dipole-V

Nl f CO8 B
Vir8.1) = Po ( ’ ) sinfw(f — r/e)]

4 epe s

summary of approximabions: <€ A € r. ‘

A = £243 [{’fﬁ —ctppnd 8N {F — & )] s
- 4t o —di A |

FEE AL

83 i — rjiell s .
T sinfer /o]




Review-radiation-dipole-E-B

ey R ¥ -
o gA LR (Eﬁnff

o Aar ) cosfw(f — r/c)] g

|¥ -

Total Power:

Integrate over a sphere at large r.

L2 2

— » L P sin~ & . | .

{P) = / <€’> - dd = “f{—“} / — p=sin# d8 do
- 32n=c } | P

2, A .
_| H8¥“ | = power radiated by of an antenna

12n e
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PROBLEM 7: RADIATION RESISTANCE of an antenna
Griffths Problem 11.3 (p. 450).

Find the radiation resistance of the wire joining the two ends of the dipole. (This
is the resistance that would give the same average power loss—to heat—as the oscil-

lating dipole in fact puts out in the form of radiation.) Show that R = 790(d/\)*,
where A is the wavelength of the radiation. For the wires in an ordinary radio (say,
d = 5 em), should you worry about the radiative contribution to the total resistance?

Solution: | =dq/dt=qyw sin wt
Problem 11.3 '
P =I"R = gfw’ sin*(wt) R (Eq. 11.15) = (P) = 13w R. Equate this to Eq. 11.22:
1y an,_ g d ! B purfzm:l . _ 2Ime
ity Tl Elair =l Lo bl
pod® dxic? 2 d\* 2 g d\* (8N o ;
R= ——r =3[ y] = Em[ahr x 1077)(3 = 10%) 3] = 80m 3 (2 =| 789.6(d/N)* (1.

For the wires in an ordinary radio, with d = 5x 10~ m and (say) A = 10*m, R = 790(3 x 107%)* = 2% 1000,

which is negligible compared to the QOhmic resistance.
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PROBLEM 8: A ROTATING ELECTRIC DIPOLE
Griffiths Problem 11.4 (p. 450).

A rotating electric dipole can be thought of as the superposition of two escillating
dipoles, one along the r axis, and the other along the y axis (Fig. 11.7), with the
latter out of phase by 90°:

o

7 = polcos(wt) & + sin(wt) y] .

Using the principle of superposition and Eqgs. (11.18) and (11.19) (perhaps in the
form suggested by Prob. 11.2), find the fields of a rotating dipole. Also find the
Poynting vector and the intensity of the radiation. Sketch the intensity profile as
a function of the polar angle #, and calculate the total power radiated. Does the
answer seem reasonable? (Note that power, being quadratic in the fields, does not
satisfy the superposition principle. In this instance, however, it seems to. Can you
account for this?)

Figure 11.7
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s atngws f sin f - _
E = mmi’i e ( ) coslw(f —rfe)] ¢ . Max at 6=11/2
e e | '

1/E1 ~ ¢ p,/mq
~v/c << 1

L-C radiator




[Consider an arbitrary time-dependent
charge distribution p{#.7). Then

N—
ﬂ%;

— 1 ;’J‘('FE;_ ff) s /g
V(7. f) = - ar' . (25
- 4mﬂf Ber @

Expand 1/]# — 7] and f, in powers of ¥, |
using Siil?_‘l}}ai‘ approximations as before, ~Image by MIT OpenCourseWare.
Minor difference: here we have no w. Previougly we assumed fhat
d & A or equivalently w & cfd. Here we need to assume that
#/p| < ¢/d. with similar bounds on higher time derivatives.

=i 1 & F-pli f“}'f
vy L [2, FH
Ry e e e

: (26)

where fy 8 the refarded fime at the origin. Final resulé:

B(F.) =~ -2 [F x 5.

Abkhough this looks different. it i3 really the same as what we
had for the simple electric dipole. changing to vector notation and
replacing —w f by P
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The Lienard-Wiechert Potentials

Finally,

Ex{?# f} — _ —
| | dreg 1._3 T i (1  Bpg TPg )
- T
S

A

where 7, and 7, are the position and velocity of the particle
Similarly, starting with

T — 4§ = —

v..;{?u} l}} o Q?.?f}“ (?“ e r;}{;})

for a point particle, we find

— —
- 4 7 -7 {1~ fy PPy -
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Review-radiation-point-Q-E

N ‘ Radiation by Point Charges I

Recall the fields (found by differentiating the Liénard-Wiechert

potentials):

e = d i m???é P ol R . — 3 .= -
BRI ! : — [;c:‘ o T o L e g 1 58 (e 0 a:ﬂ}] :
4meg (4 (7 - ] i
where

If #, = 0 {at the retarded time), then

Vp<<c

i

E e

q

A et P — F

(2 x {a xd,)].
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The Fields of a Point Charge

Differentinting the Lidnsrd-Wischert potentials, after several paces, one Hnds

W {; '?“' - ??g LY 23 . .
". ""‘;.' . :il. ; H; . 'E; b "';." . ""‘;.f . . H E'\;'
EAF 1 1 e g e (e ) (X @ .| {38
Hep (o - {37 - 0 1)
whete
il ?w o ?“:r [ — H .-
O i L => c-v for linear {46
A -,
A
s | R x
£ -y
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For Vp << C

N

‘Pcynﬁng Vector (particle at rest): \

A
fhpdl il

1674

(

" o -
uiy) = &
*_‘3

)&

Total Power (Larmor formula): |

g-2 experiment to
measure e dipole moment

o

ot -
T

B e
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Total Power (Larmor formula): |

o
o d
by e

P=

(32)

Lienard's Generalization if &, # 0:| "r¥P=°

P ’{j ‘r;"".-ﬂ: 5 (”:___3: 3 “) _ ’{_EE_ “ {:{.{in {igf 1 (33)
bre -

Grmge dr dr
‘—'_i
For relativisis only

.M“} .
&4 xoa

£

P = rate ai which energy that 8 destined to become radiation i3
leaving the particle.
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PROBLEM 9: RADIATION AND THE BOHR ATOM

Griffiths Problem 11.14 (pp. 464-465).

In Bohr's theory of hydrogen, the electron in its ground state was supposed to travel
in a circle of radius 5 x 10~ m, held in orbit by the Coulomb attraction of the
proton. According to classical electrodynamics, this electron should radiate, and
hence spiral in to the nucleus. Show that v < ¢ for most of the trip (so you can
use the Larmor formula), and calculate the lifespan of Bohr's atom. (Assume each
revolution is essentially circular.)

Solution:

FProblem 11.14

e o 1 g2 Charges in a given
= S =mas=m— U= ——. At the beginning (rp = 0.54),
dmeg v r dwe mr quantum state re-
% (L6 x 10-19)? -1/2 absorbs its own
i [4::{&.55 <0-123(9.11 x 10-21)(5 x w~“}] Ix IEI’ =000 fields

and when the radius is one hundredth of this v/e is only 10 times greater (0.075), so or most of the trip the

velocity is safely nonrelativistic.

? (o 261 g \? ;

From the Larmor formula, P = 224 (T} - Fod i 7| (since a = v?/r), and P = —dU/dt,
Gme \\ r dmweg mr

where ' is the (total) energy of the electron:

1
U=Uyn + Upn-l. o i

Fwdl 1 g*dr 7 1 ¢\ dr _ 1 ¢ 1
50 dt E'.rr-:'u. rE dt =P= Grege® \ dmep mr?) » anxd hence dt ~ 3 E?ngmr:) 2t o
2megirie 2 E:rrfgm:: u 2 2regrne 2 3
it = —3e T dr =t = —3c| ——— ridr =|e q—z T
o
-2 — &1 2
= (3 x 10%) | 27885 x 107 7)(9.11 x 10 ]':3 X101 (5 x 10-11)® =13 < 10~ 1 5.] (Not very long!)
(1.6 x 10-19)2
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Radiation Reaction Force




Radiation reaction Power =7 Radiated power

- > ogta®
g L0 = '
f0g” s~ 2

Gre Grre

PROBLEM 10: THREE EXAMPLES OF RADIATION REACTION

Griffiths Problem 11,17 (p. 468),

35



V * da/dt = a2?

Problem 11.17 5
(a} To counteract the radiation reaction (Eqg. 11.80), you must exert a force F, = — 'iéﬂ_:i
For circular mation, r(t) = R[cos(wt)® + sin(wt) §], v(t) = r = Rw[—sin(wt) X + cos(wt) ¥];

iz

Po=F.-v= szvz_ This is the power you must supply.

2.2
Meanwhile, the power radiated is (Eq. 11.70) Frag = M;i!:r: , and a? = w'r? = WiR? = W, so

Paa = Eﬂg w?v?, and the two expressions agree.
me

(b) _For simple harmonic motion, r(t) = Acosiwt] 2Z; v =17 = —Awsin{wt) &: a=v = —Aw* cos(wl)Z =
2 2

-l a4 = —w?F = —wiv. So|F, = i v: P = {09 242 | Rut this time a2 = wtr? = W A? cns? (wrt),
Gwe Gme

u?vhmeas wiv? = wt A?sin®(wt), so

Po= pof* WA cos(wi) # P, .U.ﬂl? 04 A2 sin® (wt);

Gmre o Gme

“he power you deliver is not equal to the power radiated. However, since the time averages of sin® (wt) and
208° (wt) are cqua. (to wit: 1/2), over a full cyele the energy radiated is the same as the energy input. (In the
mean time energy is evidently being stored temporarily in the neacby fields.)
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Paradox of radiation reaction force?

[

—
F1

"rack o

thag”

g (37)
tiymer '

im the Abrabham-Lorentzy formaln for the radintion reaction force.

g

(c) Conalder the case of a particle in free fall (constant acceleration g). What ia
the radiation reaction force’? “What 13 the power radiated? Comment on theze

reaulta,

(c) In free fall, vit) = %yiz V:v=gty;a=gy;, a=10 8o |F‘., = D;| the radiation reaction is zero, and

hence | . = (). | But there 15 radiation: | P,y =

2
faod

11

-EEQ .| Evidently energy is being continuously extracted from

the nearby ficlds. This paradox persists even in the ezact solution {where we do not assume v € ¢, as in the

Larmor formula and the Abraham-Lorentz formula)—see Prob. 11.31.

7?77
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Two errors cause this paradox

1. a=?g=constant?
2. Wrong application of the formula



(t) In free fall, v(i) = %yi"? y:v=gtyia=gy; a=0 S|F, :ﬂ, the radiation reaction is zero, and

2
T find™ . L :
hence | I = (.| But there 15 radiation: | Py = Egﬂ. Evidently energy is being continuously extracted from

the nearby fields. This paradox persists even in the ezact solution (where we do net assume v € ¢, as in {he
Larmor formula and the Abraham-Lorentz formula)—see Prob. 1131,

* Rest m = gravitational mass? ma = mg?
*ma=mg-F_, 2

¢ a=g[l-et a=g-oda/dt

e a=0att=0IIl da/dt not = O!

Radiation reaction Power =7 Radiated power

S
pog® - e RHOG A
a9 = —
ﬁ‘:'i.-f.' (jﬂ'ﬂ
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Derivation of Radiation Reaction Force

Free fall is NOT cyclic! The v * a terms at t1 and t2 must
be kept to make Eq. 35 hold!




Last example: against free fall
A vertical bouncing loop in B-field

’ emf =-B wdy/dt-L dl/dt = IR
F=ma = I‘mad
B R Multiply by v
; d/dt[1/2 mv2 + mgy +1/2 LI2 ]

=-1°R - power radiated



Psetl0 2c

Since the fringing fields can be ignored, this implies, like most capacitors, the linear dimension
L >> d, which is the distance between the plates, so Ampere loop integral yields

2 [ Eind,y(z = d/2) dy, 2 [ Bind 2(y = L) dz

d/2
~2 fOL Eind,y (z = %) dy
~ 21 * Eind,y(Z:d/Z)

which equals d @s/dt and Problem #2-C can be solved accordingly just like in the original
version of the solution. As long as [.>>d, Eindv(z=d/2) can be shown to be constant, independent
of v by taking many smaller loops, similar to the case of an infinite solenoid.
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Psetl0 2c

Faraday’s law 1s independent of the charge distributions on the plates. Even if the electrons in the
conductor will rearrange to their equilibrium configuration under the influence of the induced

electric field to stop the current, Using Faraday’s law we still have Eindy ~ d®s/dt /(214+2d) ~

d®s/dt /(2L). Eind does not vanish inside the conducting plates, and Eindy does not vanish just
outside the plates on the horizontal surfaces. Surely £y must be continuous.

To further elaborate, let me define E'total y=Eindy + Estatic-y

where Estatic-y 18 the static field produced by the (re-distributed) charges along one plate and it will
produce an internal force between the charges on the plate and thus will not produce any net
horizontal force. Eindy will produce a net horizontal force
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