8.08 Problem Set # 3

Feb. 16, 2005 Due Feb. 23, 2005

Problems:

- S of a spin-1 spin can take three different values S = 0 and S = ±1.
 (a) Consider one spin-1 spin in a magnetic field. The energy is given by E = −hS. Find the average spin ⟨S⟩ at temperature T.
 - (b) Consider a 1D Ising model formed by spin-1 spins

$$E = -J\sum_{i=1}^{N} S_i S_{i+1}$$

Using the mean-field theory to find the critical temperature T_c , below which the system spontaneously generate magnetization.

2. Water-vapor transition can be described by the following Ginzberg-Landau free energy (or more precisely Gibbs potential) near the critical point

$$G = (h_1T - h_2P)\delta n + (-a_1 + a_2T + a_3P)\delta n^2 + b\delta n^4$$

All the constant coefficients $h_{1,2}$, $a_{1,2,3}$, and b are positive. Here $\delta n = n - n_c$. n is the density of water molecules and n_c is the density at the critical point (T_c, P_c) .

(a) Determine P_c and T_c of the critical point from the constants $h_{1,2}$, $a_{1,2}$ and b.

(b) Determine first order phase transition line between water and vapor the T-P space. Sketch such a line in the T-P space.

(c) Calculate the change of the density Δn across the first order transition line. (*ie* $\Delta n = n_{water} - n_{vapor}$ on the two sides of the first phase transition.)

3. Problem 14.6 in K. Huang's book. (20 pts)

(It may be less confusing to rename the order parameter from S to m so not to be confussed with entropy.)