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Chapter 4


Boson systems


A boson system is the simplest system in nature. It demonstrates a wide variety of physical 
phenomena, such as superfluidity, magnetism, crystals, etc. We can also use boson system to study 
many different phase transitions. Despite (or due to) its simplicity, a boson system may also be 
the deep fundamental structure that produces all the elementary particles including photons and 
electrons [Wen 2003b]. If this is true, a boson system will actually be a theory of everything. 

In this chapter, we will study interacting bosons using a classical picture. We first develop a 
classical field theory that describes the bosons. Then we consider the collective vibration modes 
of the field. After quantizing those vibration modes, we gain a understanding of the low energy 
properties of the quantum interacting bosons. 

4.1 A first look at a free boson system 

n­boson Hamiltonian and n­boson energy eigenstates for a free boson • 
system. 

There are two kinds of particles in nature, bosons and fermions. Photons and Hydrogen 
molecules are two examples of bosons. Photons hardly interact with each other. So the pho­
ton system is a non­interacting boson system, or a free boson system. Hydrogen molecules have 
a short range interaction. For a dilute Hydrogen gas there is little chance for two molecules to 
be close to each other. Thus the interaction between the Hydrogen molecules can also be ignored 
and we can treat the Hydrogen gas as a system of free bosons. In this section, we will study such 
free boson systems. To simplify our discussion even further, we will consider free bosons in one 
dimension. The generalization to higher dimension is often straight forward. 

To construct a quantum theory for many bosons, let us start with the simplest case: the state 
with no particle. Such a state is called a vacuum state and is denoted by 0 . The energy of such 
a state is zero. 

The next simplest state is a state with one particle. Actually there are many different one­
particle states. Those states form a Hilbert space H1. One set of bases vectors for H1 is x which 
describe a particle at x. x ’s are normalized according to 

x x = δ(x− x�). 

A generic one­particle state ψ is described by a complex wave function ψ(x): 

|ψ� = dxψ(x) x
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Let us assume that the particle is relativistic and is described by the one­particle Hamiltonian 

ˆ 2∂2 + m2c4	 (4.1.1)H1 = 
�
−c x 

where m is the mass of the particle and c the speed of light. The energy eigenstates of such a 
Hamiltonian are plane waves 

i kx|k� = 
� 

dxe	 x

4with energy Ek = 
√
c2k2 + m2c . Certainly the statistics is not important here. The one­particle 

states for a boson or a fermion are identical. 

For a particle in three dimensions, Ĥ1 becomes 

4H1 = 
�
c2(−∂2ˆ

x − ∂y 
2 − ∂z 

2) + m2c

The wave vector will have three components k = (kx, ky , kz ) and the energy of a 3D plain wave 

state |k� will be Ek = 
�
c2k2 + m2c4. If we take m to be the mass of the Hydrogen molecule, Ek 

will be the energy of of single Hydrogen molecule. For a single massless photon, the energy can be 
obtained by taking m = 0 and is given by Ek = c k .| |

The two­particle states form a bigger Hilbert space H2. One set of bases vectors for H2 is x1x2

with a understanding that x1x2 and x2x1 are the two names for the same physical state. So we 
have 

|x1x2 = x2x1 (4.1.2) 

The equivalence of x1x2 and x2x1 is very important. It means that there is only one state with 
one particle at x1 and one particle at x2. If x1x2 and x2x1 describe two different quantum states, 
then there are two different states with one particle at x1 and one particle at x2. In this case the 
system will be a system of non­identical particles. The condition that there is only a single state 
with one particle at x1 and one particle at x2 makes the particles in our system identical particles. 

A generic two­particle state is given by 

ψtwo­particles� = dx1 dx2 ψ(x1, x2) x1x2	 (4.1.3)|
x1�x2	

| � 

Note that the integration is only over the region x1 � x2 to avoid double counting, since x1x2 and 
|x2x1 represent the same state. So the the two­particle wave function ψ(x1, x2) is only defined for 
x1 � x2. 

Using eqn (4.1.2), we can extend the wave function ψ(x1, x2) to the region with x1 > x2 through 
the relation 

ψ(x1, x2) = ψ(x2, x1) 

This allows us to rewrite eqn (4.1.3) as 

1 
�

ψtwo­particles� = dx1 dx2 ψx1,x2 x1x2|
2	

| � 

where the integration is over the whole 2D plane (x1, x2). We see that the states of two identical 
particles can be described by symmetric wave functions ψ(x1, x2) = ψ(x2, x1). 

A careful reader may note that so far we only specified that the two particles are identical parti­
cles. We did not specify if the two particles are bosons or fermions. So the above reasoning implies 
that both bosonic and fermionic identical particles are described by symmetric wave functions. 
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But what determines the statistics of the identical particles? It turns out that the statistics 
is not determined by the symmetry or antisymmetry property of the wave function, but by the 
Hamiltonian that governs the dynamics of the two particles. 

If we choose the Hamiltonian that acts on the two­particle state ψtwo­particles� to be the sum of |
two one­particle Hamiltonian (4.1.1) 

ˆ
�
−c2∂2 

�
−c2∂2 2 4H2 = x1 

+ m2c4 + + m c (4.1.4)x2 

then the two identical particles will be bosons. Further more such a Hamiltonian also implies that 
there is no interaction between the two particles. So Ĥ2 describes our free 1D boson system with 
two bosons. 

ˆWe note that H2 is invariant under the exchange x1 x2. So when it acts on a symmetric 
ˆ

↔
wave function ψ(x1, x2), H2 will generate another symmetric wave function. Since the identical 
particles (bosons or fermions) are always described by symmetric wave functions, the two­particle 
Hamiltonian for identical particles are always invariant under the exchange, so that the action of 
the Hamiltonian on the allowed wave functions can only generate allowed wave functions. 

The energy eigenstates of Ĥ2 are plain waves ψ(x1, x2) = e i (k1x1+k2x2) + e i (k1x2+k2x1 ) (which is 
symmetric under the exchange of x1 and x2) or 

� 
dx1 dx2 

� 
e i (k1x1+k2x2) + e i (k1x2+k2x1 )

� 
x1x2k1k2 =| � 

x1�x2 

| � 

We note that k1k2 = k2k1 . So k1k2 ’s are also redundant names: |k1k2 and k2k1 are two | � | � | � � | �
names for the same plain wave state. The energy of the plain wave state is Ek1k2 = �k1 + �k2 where 

�k = 
�
c2k2 + m2c4 . (4.1.5) 

The above discussion can be easily generalized to n­particles. The n­particle Hamiltonian have 
a form 

n

Hn xi 
2 4ˆ = 

��
−c2∂2 + m c (4.1.6) 

i=1 

Such a Hamiltonian determines the statistics of the particles to be bosonic. The energy eigenstates 
are kn� with energy 

�n �ki . The different orders of k1k2 · · · kn in kn correspond i=1|k1k2 · · · |k1k2 · · · �
to the same state, for example k1k2k3 = k2k1k3 = k3k1k2 . 

4.2 **A brief look at Fermi statistics 

• Identical particles can always be described by symmetric wave func­
tions. The statistics of the identical particles is determined by n­particle 
Hamiltonians. This provides a unified way to understand Bose, Fermi, 
and fractional statistics. 

We have stressed that both bosons and fermions can be described by symmetric wave functions. 
The statistics of the identical particles are determined by the many­particle Hamiltonian. The 
particular two­particle Hamiltonian (4.1.4) gives rise to Bose statistics. A curious reader may 
wonder what kind of two­particle Hamiltonian gives rise to Fermi statistics. As an example, let me 
just write a two­particle Hamiltonian that gives rise to Fermi statistics in 2D (in non­relativistic 
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Figure 4.1: The definition of the function Θ(x, y). 

limit): 

H ferm (∂ + i ax)2 + (∂y1 + i ay )2 (∂ − i ax)2 + (∂y2 − i ay )2 
x1 x2ˆ = 2 − 

2m 
− 

2m 

ax = 
y1 − y2 

ay = 
x1 − x2 

(x1 − x2)2 + (y1 − y2)2 , − 
(x1 − x2)2 + (y1 − y2)2 , (4.2.1) 

We note that ˆ
2H
ferm is still invariant under the exchange x1 x2. Such a two­particle Hamiltonian ↔

when acting on symmetric wave functions ψ(x1, y1, x2, y2) = ψ(x2, y2, x1, y1) describes two fermions 
in two dimensions. 

Ĥ ferm can be simplified by the following transformation 

ψ(x1, y1, x2, y2) = e i Θ(x1−x2 ,y1 −y2) ψ̃(x1, y1, x2, y2) 

H ferm e i Θ(x1−x2 ,y1 −y2) ˜ˆ = H ferm e− i Θ(x1−x2 ,y1 −y2)ˆ (4.2.2)2 2 

where Θ(x, y) is the angle between the vector (x, y) and the positive x direction (see Fig. 4.1). 
For positive x and y, Θ(x, y) = arctan 

� y �. Although Θ(x, y) is discontinuous on the positive x 
x­axis with a discontinuity of 2π, the function e i Θ(x,y) is a smooth function of (x, y) (except at 
(x, y) = (0, 0)). Using the relation 

e i Θ(x,y)∂x e− i Θ(x,y) 

x2 + y2 , e i Θ(x,y)∂y e− i Θ(x,y) = − i 
x 

= i 
y 

x2 + y2 , 

ˆwe find that the transformed Hamiltonian ˜
2H
ferm has a simple form 

˜ 1 
H fermˆ = − 

2m 
(∂2 + ∂y

2 
1 
) − 

2
1 
m 

(∂2 + ∂2 ).2 x1 x2 y2 

From e i Θ(x,y) = − e i Θ(−x,−y), we can show that the transformed wave function is antisymmetric 
˜ψ̃(x1, y1, x2, y2) = −ψ(x2, y2, x1, y1). 

˜So the simple two­particle Hamiltonian Ĥ ferm when acting on antisymmetric wave functions 2 
ψ̃(x1, y1, x2, y2) describes two fermions in two dimensions. This way we recover the usual result 
that fermions are described by antisymmetric wave functions. 

In the standard way to understand fermions, fermions are defined as particles described by 
antisymmetry wave functions. Through the above discussion, we see that this standard under­
standing of fermions did not capture the essence of Fermi statistics. This is because fermions can 
be described by both symmetric wave functions (with a complicated many­particle Hamiltonian) 
or antisymmetric wave functions (with a simpler many­particle Hamiltonian). 

I personally believe that symmetric wave functions plus complicated many­particle Hamiltonian 
is a correct way to understand fermions, at least physically. The standard understanding using 
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antisymmetric wave function is very formal and misleading despite its mathematical simplicity. 
The confusion cause by the standard understanding is reflected in the following conversation: 
A: I have two fermions. One at x1 and the other at x2. I wonder what is the amplitude of such a 
state. 
B: Well it depends on how you say it. If you say one fermion at x1 and one fermion at x2, the 
amplitude will be ψ. If you say one fermion at x2 and one fermion at x1, the amplitude will be 
−ψ. 
A: This is ridiculous. The two ways of saying mean exactly the same thing. How come it leads to 
two different results. 
B: Well, it is not that ridiculous. You know that two wave functions differ by a total phase factor 
e i θ actually describe the same quantum state. So the amplitudes ψ and −ψ actually correspond to 
the same physical state. There is no contradiction. 
A: But then why is the minus sign important? Why does the minus sign characterize the Fermi 
statistics? Saying one particle at x2 and the other at x1 may very well leads to an amplitude e i θ ψ 
instead of −ψ. The phase θ should have no physical meaning, less to determine the statistics of 
the identical particles. 
B: Well, we should look at the wave function of identical particles ψ(x1, x2, ..., xn) as a whole. 
Imposing an arbitrary exchange phase, say ψ(x1, x2, ..., xn) = e i θ ψ(x2, x1, ..., xn), may result in a 
discontinuous many­particle wave function ψ(x1, x2, ..., xn). Only when θ = 0 or π can we have a 
continuous wave function. 
A: But the continuity of the wave function should not be essential. If the identical particles are 
defined on a lattice, the continuity of the wave function will be meaningless. On the other hand, 
identical particles on lattice still have well defined statistics (and even fractional statistics in 2D). 

I hope that I have made my point. The statistics of identical particles is a very tricky subject. 
Using exchange symmetry of many­particle wave function to understand statistics is formal and 
misleading. It misses the essence of statistics. If we understand the statistics that way, the origin 
of statistics will appear to be very mysterious. Such a understanding does not tell us how to make 
identical particles with different statistics. It does not encourage us to think how to make identical 
particles with different statistics. It suggests that the statistics is fundamental and is given. We 
just have to accept it. 

In contrast, the description of identical particle using symmetric wave function and encoding 
the statistics in the many­particle Hamiltonian leads to completely different picture. I believe it is 
a more correct picture that captures more essence of statistics despite its mathematical complexity. 
Within such a picture, statistics of identical particles is a dynamical property determined by many­
particle Hamiltonian. We can change the Hamiltonian to obtain different statistics. We can also 
naturally obtain fractional statistics in two dimensions. Such an understanding tells us how to 
make different statistics. We can also have phase transitions that change the statistics of particles. 
We will have a more detailed discussion of Fermi statistics later. 

Problem 4.2.1 
By rescaling ax and ay in eqn (4.2.1), we can obtain the Hamiltonian that describes two particles with fractional 
statistics. The following Hamiltonian, when acting on symmetric wave functions, describes two such particles 
confined by a harmonic potential K 

2 (x
2 + y2): 

1 1 1 
H fracˆ = − 

2
1 
m 

(∂x1 + iax)2 − 
2m 

(∂y1 + iay )2 (∂x2 − iax)2 (∂y2 − iay )2 
2 − 

2m 
− 

2m 
K 2 2 2+ 
2

(x + y 2 + x + y2 )1 1 2 

ax = 
θ 
π 

y1 − y2 

(x1 − x2)2 + (y1 − y2)2 
, ay = − 

θ 
π 

x1 − x2 

(x1 − x2)2 + (y1 − y2)2 
, (4.2.3) 

where θ is the statistical angle. θ = 0 correspond to bosons and θ = π correspond to fermions. 
(a) Find the ground state energy of Ĥ frac for θ = 0, π/2, and π.2 
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Figure 4.2: Exchanging two particles. 

(b) The ground state energy for two bosons/fermions in the harmonic potential K 
2 (x

2 + y2) can also be obtained 
by filling energy levels. Check the correctness of your results in (a) against the results obtained by filling energy 
levels. 
(c) Can we still use a transformation similar to eqn (4.2.2) to encode the fractional statistics in the exchange 
symmetry of the wave function? 

Problem 4.2.2 
(a) Find a 3­particle Hamiltonian that acts on symmetric wave functions and describes Fermi statistics. (Hint: 
You may generalize eqn (4.2.1)). 
(b) Find a transformation that transform symmetric wave function to antisymmetric wave function. Find the 
transformed 3­particle Hamiltonian. (Try to choose the 3­particle Hamiltonian in (a) such that the transformed 
3­particle Hamiltonian is a sum of three one­particle Hamiltonians.) 

4.3 A second look at the free boson system 

• The bosons states with different numbers of bosons can all be labeled by 
occupation numbers. 

•A free boson system is equivalent to collection of harmonic oscillators. 

In the section 4.1, we have viewed vacuum as an empty stage. The bosons are actors on the 
stage. In this picture, the existence and the origin of identical particles are very mysterious. To 
appreciate this point, let us consider a state with particle 1 at x and particles 2 at y. After 
exchanging the two particles we get another state with particle 1 at y and particles 2 at x (see 
Fig. 4.2). If the two states are different, then the two particles are not identical. If the two states 
before and after the exchange are actually the same state, then the two particles are called identical 
particles 

But why the two states have to be the same? It appears that we can always follow the trajec­
tories of the particles in time history to distinguish the two states before and after the exchange. 
This is the source of the mystery of identical particles, if we view particles are somethings placed in 
an empty vacuum. We wonder where do identical particles come from? Why do they have to exist? 
The mystery of identical particles is one of most fundamental mystery of our nature. It reflects 
certain deep structures in physics law and the properties of our vacuum. But what is the message? 
What does the existence of identical particle tell us about the physics laws and the properties of 
vacuum? In this section, we will try to provide an answer to those fundamental questions. We will 
use the 1D free boson system to illustrate our points. 

We assume the bosons live on circle of length L. In this case, the wave vectors k are quantized: 

2π 
k = κn ≡ n 

L 

where n is an integer. The total Hilbert space of arbitrary number of bosons is formed by the 
no­boson state, one­boson states, two­boson states, etc: 

= , k1 , k1k2H = H0 ⊕H1 ⊕H2 · · · {|0� | � | �, · · · } 
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Figure 4.3: The circles on the dispersion curve �k correspond to allowed k­levels labeled by κn. The 
empty dots represent unoccupied k­levels with nκn = 0, and the filled dots occupied k­levels with 
nκn = 1. Two filled dots together represent doubly occupied levels with nκn = 2. The state in the 
above graph is described by nκ−1 nκ0 nκ1 = 1, nκ2 = 2 and other nκn = 0 in nκ2 · · ·� with nκ−3| · · ·
the occupation­number notation. It is a three­boson state described by k1k2k3 with k1 = −6π/L 
and k2 = k3 = 4π/L in the wave­vector notation. 

Instead of using ki that describes the momentum of each boson, we can use a set of the occu­
pation numbers nκn to label each bosonic state in H nκ0 nκ1 nκ2 · · ·�. nκn is the number of nκ−1| · · ·
bosons in the level with momentum k = κn (see Fig. 4.3). Such an level will be called k­level. The 
vacuum state 0 is given by the state with all nκn = 0: 0 = 0000 · · ·�. The one­boson state k1| � | � | · · · | �
is given by the state with all nκn = 0, except nk1 = 1. A more general state is represented in Fig. 
4.3. In this way, all the states in H are labeled by nκ−1 nκ0 nκ1 nκ2 · · ·� with nκn = .| · · · 0, 1, 2, · · ·
From the relation between the two ways of labeling states, |k1k2 · · ·� and | · · ·nκ−1 nκ0 nκ1 

one can show that 
�

i �ki = 
�

n nκn �κn . So if the bosons are free, the state | · · ·nκ−1 nκ0 nκ1 

nκ2 · · ·�, 
nκ2 · · ·� 

is an energy eigenstate with an energy 

Etot = 
� 

nκn �κn . (4.3.1) 
n 

We like to show that the above free boson system can be viewed as a collection of harmonic 
oscillators. The different oscillators in the collection are labeled by κn. The eigenstates of the 

| � 2 )�ωκn where ωκn is the oscillation oscillator κn are labeled by nκn . The energy of nκn is (nκn + 1 

angular frequency of the oscillator κn. If we put the oscillators together, a state of the collection 
with the oscillator κn in the nκn th excited state can be denoted as nκ−1 nκ0 nκ1 nκ2 · · ·�. The 
energy of such a state is 

�
n(nκn + 1 

| · · ·
2 )�ωκn . We see that if we choose �ωκn = �κn , then the above 

energy will reproduce the boson energy 
�

n nκn �κn apart from an overall constant 1 �
n �κn . Also2 

the oscillator states and the many­boson states have an one­to­one correspondence. Thus the free 
many­boson system can be viewed as a collection of harmonic oscillators. 

4.4 A vibrating­string picture of 1D boson system 

•A 1D boson system is equivalent to quantized vibrating string. 

•A classical vibrating string provides a classical picture of 1D bosons. 
The vibrating string has a more formal name – 1D field theory. 

The collection of the oscillators with frequency ωκn = �κn = 
�
c2κ2 + m2c4 can be shown to n 

be the vibration modes of a string. This leads to a vibrating­string picture or a field theory of the 
bosons. Let us consider a string whose dynamics is described by the following wave equation 

2¨ h(x, t) = c 2∂2h(x, t) −m c 4h(x, t) (4.4.1)x
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where h(x, t) is the vibration amplitude of the string and we assume the string form a loop of length 
L: 

h(x, t) = h(x + L, t). 

To show that the vibration modes of the above wave equation reproduce the collection of the 
oscillators labeled by κn, we rewrite the wave equation as 

ḣ(x, t) = 
�
−c2∂2 + m2c4 p(x, t)x 

−ṗ(x, t) = 
�
−c2∂2 + m2c4 h(x, t) (4.4.2)x 

Introducing a complex amplitude 

h(x, t) + i p(x, t)
φ(x, t) = √

2 
(4.4.3) 

the wave equation (4.4.2) becomes 

i φ̇(x, t) = 
�
−c2∂2 + m2c4 φ(x, t) (4.4.4)x 

which has a form of Schrödinger equation! Now we do mode expansion by writing 

i κnxφ(x, t) = 
� 

φκn (t)L
−1/2 e 

κn 

The wave equation (4.4.4) becomes 

i φ̇κn (t) = 
�
c2κ2 + m2c4 φκn (t) (4.4.5)n 

Let Xκn and Pκn be the real and imaginary parts of φκn = Xκn + i Pκn . We rewrite eqn (4.4.5) as 

Ẋκn (t) = 
�
c2κ2 + m2c4 Pκn (t)n 

Ṗκn (t) = −
�
c2κ2 + m2c4 Xκn (t) (4.4.6)n 

We recognize that that eqn (4.4.6) is the equation of motion of an oscillator with Xκn as the 
coordinate and Pκn as the momentum. There is one oscillator for every κn = 2πn/L. The mass of 

2κ2 4the oscillator is Mκn = 1/
�
c + m2c4 and the spring constant is Kκn = 

�
c2κ2 + m2c . So the n n 

total (classical) energy of the oscillators is 

1 1 
�

Etot = 
�� 

2Mκn 

Pκ
2 
n 

+
2 
Kκn X

2 
κn 

κn 

= 
� 

dx φ∗(x)
�
−c2∂2 + m2c4 φ(x)x 

1 
= 

� 
dx 

� 
1 
ḣ ḣ+

1 
h
�
−c + m2c4 h 

� 

(4.4.7)
2∂2 4 2+ m2c

x2 
�
−c x 

2∂2 

The expression of the energy and the equation of motion (4.4.1) or (4.4.4) provide a complete 
description of the oscillators as a classical system. Such a system of vibrating string is also called 
a classical field theory (in one dimension) where h or φ is the field. From the order of the time 
derivative, we find that eqn (4.4.1) is a coordinate­space equation of motion while eqn (4.4.4) is a 
phase­space equation of motion. 

For oscillator κn, the oscillation frequency is ωκn = 
�
Kκn /Mκn = 

�
c2κ2 + m2c4. We see that n 

�ωκn = �κn (note that � = 1). So indeed the vibration modes of the string give rise to the collection 
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Figure 4.4: Three pictures of a two­boson state where both bosons have the same momentum 
k = 2 2π . (a) The momentum picture, (b) the occupation picture, and (c) the vibrating­string L 
picture. 

Figure 4.5: (a) A boson gas and (b) the same boson gas as a vibrating string. 

of the oscillators that describes the bosons with dispersion relation �k = 
√
c2k2 + m2c4 (see Fig. 

4.4). 

The above result is quite amazing. The quantum theory of a vibrating string described by 
eqn (4.4.1) is the same as the quantum theory of bosons described by eqn (4.1.6)! So instead of 
using the picture Fig. 4.5a to describe a quantum boson gas, we can also use the picture Fig. 4.5b 
to describe the same quantum boson gas. The picture Fig. 4.5b represents a field theory description 
of the boson gas. 

The vibrating­string picture of the boson gas only works in 1D. In 2D, we need to replace 
string by membrane: a boson gas in 2D can also be regarded a vibrating membrane. Similarly in 
d­dimensions, a boson gas is equivalent to a vibrating d­brane (a d­dimensional membrane). 

Problem 4.4.1 
Following the example of Fig. 4.4, draw three pictures for a two­boson state with one boson carrying momentum 
k = 4π/L and the other k = 6π/L. 

4.5 *The second quantized description of free bosons 

• Quantization of the vibrating string. 

• A Hamiltonian without fixing the number of bosons. 

• Boson creation and annihilation operators. 

The vibrating string discussed in the last section is a classical theory. Such a classical theory 
does not directly describe the quantum boson gas. Only quantized vibrating string describe the 
quantum bosons. To quantize the vibrating string, we note that a vibrating string is a collection 
of oscillators described by (Xκn , Pκn ). Since (Xκn , Pκn ) is a canonical coordinate­momentum pair, 
a quantized theory can be obtained by replacing (Xκn , Pκn ) by a pair of operators ( X̂κn , P̂κn ) that 
satisfy 

ˆ[Xκn , P̂κn ] = i 
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So after quantization, the classical modes φκn and the classical field φ(x) all become operators: 

φκn φ̂κn = √1
2
( X̂κn + i P̂κn )→ 

ˆ i xκn ˆφ(x) → φ(x) = 
� 

L−1/2 e ψκn 

κn 

One can check that φ̂κn and φ̂(x) satisfy the following algebra 

[φ̂κn , φ̂
† ] = δκnκm , [φ̂κn , φ̂κm ] = 0. (4.5.1)κm 

and 
ˆ[φ̂(x), φ†(x�)] = δ(x − x�), [φ̂(x), φ̂(x�)] = 0, 

The Hamiltonian of the quantized vibrating string can be obtained from the classical energy 
Etot = 

�
κn 

1 �κn (P 2 + X2 ) (see eqn (4.4.7)) 2 κn κn 

ˆ 1 
�κn (P̂

2 X2H0 = 
� 

κn 
+ ˆ

κn 
)

2 
κn 

φ† ˆ 1 
= 

� 
�κn (ˆ

κn 
φκn + 

2
) (4.5.2) 

κn 

where �k is given by eqn (4.1.5). Let nκn be the eigenvalues of φ̂κ
†

n φ̂κn . The eigenstates of Ĥ0 has 
a form nκ−1 nκ0 nκ1 nκ2 · · ·� which has an eigenvalue 

�
κn 
nκn �κn . So the above Hamiltonian can | · · ·

also be regarded as the Hamiltonian of the free quantum many­boson system. Such a description 
of the bosons is called the second quantized description. 

From eqn (4.5.1) and eqn (4.5.2), we see that φ̂κ
†

n and φ̂κn are the raising and the lowing 
operators of the oscillator κn. Since the eigenvalues of φ̂†κn φ̂κn correspond to occupation numbers, 
the total boson number operator is given by 

N̂ = 
� 

φ̂† ˆ = 
� 

dx φ̂†(x)φ̂(x)κn 
φκn 

κn 

Thus we may interpret φ̂†(x)φ̂(x) as the boson number­density operator. One can also show that 

ˆ ˆ ˆ[N, φ̂†] = φ̂†, [N, φ̂] = −φ. 

where φ̂ is φ̂(x) or φ̂κn . Thus φ̂† increases the boson number by one while φ̂ decreases the boson 
number by one. For this reason we also call φ† the creation operator and φ the annihilation operator 
In contract to the Hamiltonian (4.1.6) in the particle picture which only acts on n­particle states, 
the Hamiltonian (4.5.2) in the second quantized description acts on states with any numbers of 
bosons. 

4.6 Vacuum as a dynamical medium and the Casimir effect 

• The differences between the two views of bosons: the particle picture and 
the vibrating­string picture. 

•Vacuum is not empty. It is a dynamical medium just like any materials 
encountered in condensed matter physics. 
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We have discussed two ways to view a many­boson system: the particle picture (which include 
both the momentum picture k1 k2 · · ·� and the occupation picture nκ0 nκ1 nκ2 · · ·�) and the nκ−1| | · · ·
vibrating­brane picture. The essence of the particle picture is the assumption that the vacuum is 
empty. In this picture, bosons are thing placed on the empty vacuum. However, in the vibrating­
brane picture, the vacuum is regarded as a dynamical non­empty medium. The vibration of such a 
medium gives rise to bosons in the vacuum. In the last section, we have stressed the mathematical 
equivalence of the two pictures. However, the two pictures are not equivalent in physical sense. 

First, the vibrating­brane picture (or the field theory picture) provides an origin and an expla­
nation of identical particles. The particles arising from the vibrations of a d­brane are naturally 
and always identical bosons. Actually, it is impossible to obtain non­identical particles from the 
vibrations of the brane. In contrast, particles do not have to be identical particles in the particle 
picture. In this case, the existence and the appearance of identical particles is very mysterious. 

We can also turn our argument around. The very existence of identical particles in our vacuum 
suggests that we should not view particles as things placed in an empty vacuum. We should instead 
view our vacuum as a 3­brane and the particles as the vibrations of the 3­brane. Our vacuum is 
not empty. It is a dynamical medium whose collective motion give rise to elementary particles. So 
our vacuum just like a material studied on condensed matter physics. The theory of elementary 
particles is actually a theory about one material – the vacuum material. 

Here we would like to remark that the vibrating­brane only reproduce a particular kind of identical particles – 
scaler bosons. The photons in our vacuum are actually vector bosons (or gauge bosons) due to its two polarizations 
and electrons are fermions. Those particles cannot arise from vibrating 3­branes. However, as we will see later in 
this book, the above philosophy is still correct. We should not view our vacuum as an empty stage. We should 
view it as a dynamical medium whose collective motion can even give rise to photons and electrons. The vacuum 
material has a more complicated internal structure than the simple 3­brane. It is this more complicated internal 
structure that leads to photons, electrons, gluons, quarks,[Wen 2002, 2003b] and possibly all other elementary 
particles observed in our vacuum. In this chapter, for simplicity, we treat photons as massless scaler bosons and 
regard them as vibrations of a 3­brane. 

The above discussion about the advantage of the vibrating­brane picture sounds philosophical. 
Actually, the vibrating­brane picture has a measurable consequence – Casimir effect.[Casimir 1948] 

The Casimir effect has been observed in our vacuum, confirming that the vibrating­brane picture 
is a correct picture while the particle picture is an incorrect picture for bosons. 

To understand the Casimir effect, we start with the energy of vacuum. In the particle picture, 
the vacuum is just a empty stage or a reference point. We naturally assign a zero energy to it and 
define the reference point of energy. In contrast, the vacuum energy in the vibrating­brane picture 

1is naturally non­zero and is given by the zero­energies 1 �ωk = 2 �k of the oscillators. For 1D free 2 
boson system, the vacuum energy is given by 

1 
Uvac = 

� 
�κn2 

κn 

where �k is the dispersion of the bosons. One may say that Uvac is just a constant term in the total 
energy which define the reference point of the energy. Such a constant term has no measurable 
effect. Indeed, Uvac cannot be measured directly. However, if we change the dispersion �k and/or 
change the distribution of quantized momentum κn, then the change in Uvac has physical effects 
and can be measured. 

Before discussing how to calculate the change of Uvac , let us calculate Uvac itself. At first sight, 
1the calculation of Uvac appear to be very simple since Uvac = 2 

�
κn 
�κn = +∞. Certainly, such a 

simple result of infinity is meaningless. The infinite Uvac is the famous infinity problem that plague 
all forms of field theories. It is so annoying that it once led people to abandon field theories. One 
can use this infinity problem to argue that the vibrating­brane picture for bosons is wrong. 
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lP

(a) (b)

Figure 4.6: According to quantum gravity, a continuous string cannot be a physical reality. A real 
string may look more like a sequence discrete beads. 

Figure 4.7: (a) A boson gas between two hard walls. (b) The same boson gas is described by a 
vibrating string with boundary condition h(0) = h(L) = 0. 

Actually, the problem of the infinity is not the problem of the vibrating­brane picture but the 
problem of regarding space (or the vibrating­brane) as a continuous manifold. As has been argued 
in section 2.2, continuous manifold simply does not exist in our universe. It is meaningless and 
impossible to have two points separated by a distance less the Planck length lP . Similarly, a wave 
vector larger than 1/lP is also meaningless. So it is more correct to view the string as a sequence 
discrete beads (see Fig. 4.6). I would like to stress that this is a quantum gravity effect (see section 
2.2). Our vibrating­brane picture is meaningful only for wave vectors less then Λ ∼ 1/lP if we take 
into account the quantum gravity effect. The momentum scale Λ is called the cut­off scale. So 
we should limit the Wave vector summation 

�
κn 

to over the meaningful wave vectors |κn < Λ.|
Therefore, the vacuum energy is really finite 

1 
Uvac = 

� 
�κn2 

κn=0,±2π/L,±4π/L,··· ,±Λ 

Certainly, we are not sure that the energy levels should suddenly disappear for k above Λ as implied 
by the above formula. We may very well have a softer cut­off 

1 /ΛUvac = 
� 

�κn e
−|κn|

2 
κn =0,±2π/L,±4π/L,··· 

But what is the right way to calculate Uvac? The physics at short distance is still unknown 
to us (since we still do not have a theory of quantum gravity). So it is not clear what is the 
correct way to cut­off the wave vector summation 

�
κn 

. However, we will see later that the low 
energy and long distance effects do not depend on how we cut­off the momentum summation. This 
allows us to make prediction without a complete understanding of the theory. The ignorance of the 
short distance physics does not prevent us from gaining a (partial) understanding of long distance 
physics. 

Let us consider a 1D mass m boson system between two hard walls (see Fig. 4.7a). One wall 
is at x = 0 and the other at x = L. Such a boson system is described by a string (4.4.1) that 
satisfy the boundary condition h(0) = h(L) = 0 (see Fig. 4.7b).1 In contrast to the periodic 
boundary condition h(0) = h(L), the string vibration modes for the hard­wall case has a form 
h(x) ∝ sin(nπx/L) and are labeled by κ̃n = nπ/L, n = 0, 1, 2, · · · . In this case, the vacuum energy 

The connection between the hard wall and the boundary condition h(0) = h(L) = 0 will be discussed in section 
4.7. 
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a

L

Figure 4.8: The vibrating string with h(0) = h(a) = h(L) = 0 describes a boson gas between three 
hard walls. 

is different from that for periodic boundary condition 

1 
U hw 

κn e
−|˜ |

vac(L) = 
� 

�˜
κn /Λ 

2 
κ̃n=0,π/L,2π/L,··· 

| | U hw For massless particles, �k = c k . vac(L) can be calculated easily. We find 

cπ Λ2L cπ 
U hw 

2LΛ )
= 

4cπ 
− 

24L 
+ O(Λ−2) (4.6.1)vac(L) = 

8Lsinh2( cπ 

Now let us add the third hard walls at x = a (see Fig. 4.8). The third hard wall modifies the 
distribution of the vibration modes which changes the vacuum energy. Using the result (4.6.1), we 
find the modified vacuum energy to be 

Λ2L cπ cπ 
U hw 

vac(a, L) = 
4cπ 

− 
24(L − a) 

− 
24a 

+ O(Λ−2) 

When L is very large (i.e. L � a), we find that the total vacuum energy depends on the separation 
cπbetween the two walls at x = 0 and a: U hw 

vac (a, L) = − +Const. This causes an attractive force 24a 
between the two walls separated by a distance a 

π�c 
F = 

224a
This force between two walls in vacuum is called the Casimir effect.[Casimir 1948] It is interesting to 
note that the force does not depend on the cut­off. 

The above result is for massless bosons in 1D. For massless photons in 3D, the attractive force 
between two plates separated by a is 

π2�c 
F = A

4240a
where A is the area of the plates. Such a force was measured by Spamaay, 1958 and Lamoreaux, 
1997, indicating that our vacuum is really a dynamical medium. The study of our vacuum and its 
elementary particles is really a material science. 

4.7 Classical field theory for non­relativistic free bosons 

• Phase­space Lagrangian for the classical field theory that describes free 
bosons. 

In the section 4.4, we discussed the classical field theory (or the vibrating­string picture) of 
relativistic bosons. The same calculation also apply to a d­dimensional non­relativistic bosons in a 
potential U . Such non­relativistic bosons have a dispersion 

k2 

�k = + U
2m 
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2

and are described by an n­particle Hamiltonian


n 1ˆ = 
�

(−Hn 
2∂xi 

+ U) (4.7.1)
2m 

i=1 

Following the discussion in the last section, we can show that the quantum system (4.7.1) is related 
to a classical system – a classical field theory or a vibrating brane. The quantized vibrating brane 
describes the quantum system (4.7.1). The classical system2 is described by a phase­space equation 
of motion 

1
i φ̇(x, t) = 2∂x φ(x, t) (4.7.2)
+ U− 

2m 

and a total energy 
1


dd 2∂x φ,
 (4.7.3)
x φ∗ + UEtot = − 
2m 

where the complex field φ encodes both the amplitude and the velocity of the vibration (see 
eqn (4.4.3) and eqn (4.4.2)). Both the phase­space equation of motion (4.7.2) and the total energy 
(4.7.3) can be derived from the following phase­space Lagrangian 

φ− φ∗ 2∂x + U
 φ
 . (4.7.4)

1 

x i φ∗φ̇− Etot i φ∗ ˙dd dd xL
= = − 
2m 

We note that the potential U in the classical energy (4.7.3) or in the phase­space Lagrangian 
(4.7.4) may have a spatial dependence U = U(x). A hard wall in a certain region can be realized 
by an inifinite potential U(x) in that region. In order for the total energy (4.7.3) to be finite, an 
inifinite potential in a region will force φ(x) to be zero in that region. This is why a hard wall can 
be represented by the boundary condition φ(x) = 0 or h(x) = 0. 

Problem 4.7.1 
Derive eqn (4.7.2) and eqn (4.7.3) from the phase­space Lagrangian (4.7.4). 

4.8 *The second quantized description of interacting bosons 

• The many­body Hamiltonian that describes interacting bosons. 

• The boson density operator. 

Now let us turn to a more complicated problem of interacting bosons. Let V (x) be the potential 
energy of two bosons separated by x. The Hamiltonian that describe n interacting bosons in d­
dimension is 

1 
= 

�
(− 

i 
+ U) + 

�

Ĥ 2∂x V (xi − xj ) (4.8.1)n 2m 

i i<j 

The classical field theory (the vibrating brane) is also described by a coordinate­space equation of motion 

� 
1 

∂2 
ű2 

¨ h = − 
2m 

+ U hx 

where h is the amplitude of the vibration and a Lagrangian 

1 1 
� 

1 2 
ű ű 

L = 
Z 

dd x 

� 
1 
ḣ− 1 ∂2 

ḣ− h ∂x + U h . 
2 x + U 2 

− 
2m 

2m 
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We know that the free bosons have a second quantized description (4.5.2) which describes 0­boson, 
1­boson, 2­boson, and general n­boson situations with a single Hamiltonian. What is the second 
quantized description (or the oscillator description) of the interacting bosons? 

Again the second quantized description is written in terms of the boson creation/annihilation 
operators φ̂ and φ̂†. To obtain the form of the second quantized Hamiltonian for interacting bosons, 
we first note that the total potential energy can be rewritten in terms of the boson density 

1� 
V (xi − xj ) = 

� 
dd xdd x� 

2 
n(x)V (x − x�)n(x�) 

i<j 

Since the boson density operator is given by n̂(x) = φ̂†(x)φ̂(x) as discussed in section 4.5, the 
interaction Hamiltonian is given by 

ˆ	 � 
2
ˆ n(x�)Hint = 

� 
dd xdd x

1 
n(x)V (x − x�)ˆ

1	 ˆ ˆ=
2V 

� 
φ̂k
†
+q φ̂kVq φ

†
k�−q φk� 

q,k,k

where � 
dd x e− i q·xV (x)Vq = 

Here we have assumed that our system is a d­dimensional cube of volume V = Ld. The wave vectors 
q, k, k� are quantized, i.e. their components are 2π/L times integers. The summation 

�
q,k,k sums 

over those quantize wave vectors. φ̂k is given by 

ˆ L−d/2 i k x ˆφ(x) = 
� 

e · φk	 (4.8.2) 
k 

and satisfies the algebra 
[φ̂k, φ̂

† ] , [φ̂k, φ̂k� ] = 0.
k� = δkk� 

Putting ˆ H0 in eqn (4.5.2) together, we find the following Hamiltonian Hint and ˆ

ˆ 1 1 � 
φ̂† ˆ

k�−q φ̂k�H = 
� 

�k(φ̂† φk + 
2
) + 

2V k+q φ̂kVqφ
†	 (4.8.3)ˆ ˜ k 

k q,k,k

describes the interacting bosons. Naively, one expects �̃k describes the boson dispersion and should 
�k = 2m + U . As we will see below, this naive expectation is incorrect. We need to be taken to be ˜ k2 

choose a different �̃k in order to reduce the single­boson dispersion k2 
+ U .2m 

To determine the proper form of ˜	 H in eqn (4.8.3). �k, let us discuss a few known eigenstates of ˆ
One eigenstate |0� of Ĥ is defined by the algebraic relation 

φ̂k|0� = 0	 (4.8.4) 

ˆSuch a state is an eigenstate of the boson number operator with zero eigenvalue N 0 = 0. Thus 
1 

| �
|0� is the vacuum state with no bosons. The energy of	 0 is E0 = 

�
k 2 �̃k. Another class of the 

eigenstates is given by 
|k� = φ̂† 0k

To show |k� is an eigenstate, we commute φ̂ through φ̂† in Ĥ using the commutation relation (4.8.2) 
to put all a to the right of a†. Such a procedure is called normal ordering . This allows us to rewrite 
Ĥ as 

Ĥ = 
�

(�kφ̂
† φ̂k +

1 
�̃k) + 

1 
φ̂† ˆ ˆ	 (4.8.5)k 2 2V 

� 
Vq φ̂k

†
+q k�−q φkφk� 

k q,k,k
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where �k is given by 
V (0)

�k = �̃k + (4.8.6)
2 

ˆand V (0) is V (x) at x = 0. Using eqn (4.8.5), we easily see that k is an eigenstate of H with 
eigenvalue Ek = �k + E0. k is a state with one boson that carries a momentum k. The excitation 
energy of such a one­boson state is Ek − E0 = �k. We see that the single­boson dispersion is given 

V (0)�k to be ˜ |by �k. To reproduce the dispersion �k = k|2 
+ U , we need to choose ˜ �k = |2

k
m 

2 
+ U − .|

2m 2 

A generic state described by a collection of boson occupation numbers {nk} can be created by 
the boson creation operators φ̂† from the vacuum state |0�:k 

�
(φ̂k
† )nk |0�|{nk}� ∝ 

k 

Such a state is an eigenstate of the total boson number operator N̂ = 
�

k φ̂
† φ̂k. The total boson k 

number of |{nk}�. The state |{nk}� also carry a definite total momentum P = 
�

k knk. However, 
for interacting bosons the state |{nk}� is not an energy eigenstate. In general, it is hard to calculate 
energy eigenstates. 

k2
To summarize, if we choose �k = 2m + U , eqn (4.8.5) and eqn (4.8.1) will describe the same 

ˆ ˆinteracting boson system! Since H is not quadratic in φ̂k and φ̂k
† , H describes a collection of 

anharmonic quantum oscillators. So interacting bosons are described by anharmonic oscillators. 
k2

When �k = 2m + U , eqn (4.8.5) can be written in a more compact form 

ˆ
� 

∂2 
ˆ xH = 

� 
dd x φ†(x) − 

2m 
+ U

� 

φ̂(x) 

1 
+ 

� 
dd xdd x� V (x − x�)φ̂†(x)φ̂†(x�)φ̂(x�)φ̂(x) (4.8.7)

2 

where φ̂(x) satisfies the following algebra 

ˆ[φ̂(x), φ†(x�)] = δ(x − x�), [φ̂(x), φ̂(x�)] = 0, 

Problem 4.8.1 
Show that [N, ˆˆ H] = 0. So the total boson number is conserved and the Hamiltonian is invariant under the U(1) 

N ˆ Ntransformation generated by ˆ ˆN : H = e i θ ˆH e− i θ ˆ . 

Problem 4.8.2 
Find the total momentum operator ˆ ˆ ˆP of the bosons in terms of φ̂k. Show that [P , H] = 0 and hence the total 
momentum is conserved. 

Problem 4.8.3 
ˆIt is too hard to find the eigenstates and eigenvalues of H (4.8.5) in the 2­boson sector. Here we simplify the 

problem by limiting ourselves to 1D and consider only there k­levels: k = 0, ±2π/L. Find the eigenstates and 
the eigenvalues of Ĥ in the 2­boson sector with the above simplification. 

Problem 4.8.4 
Show eqn (4.8.5). 
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4.9 Classical field theory of interacting bosons 

• A classical picture for interacting bosons. 

The free boson system (4.7.1) is easy to solve. We do not need a classical vibrating brane 
picture to understand and to visualize the behavior of free bosons. However, an interacting boson 
system described by 

1 
= 

�
(− 

i 
+ U) + 

�

Ĥn 

2∂x V (xi − xj ) (4.9.1)
2m 

i i<j 

(or eqn (4.8.5)) is entirely a different matter. The interacting Hamiltonian eqn (4.9.1) is so hard 
to solve that we have no clue what do the low energy eigenstates and the eigenvalues look like. So 
how can we understand the properties of the interacting bosons without being able to diagonalize 
the Hamiltonian eqn (4.9.1)? 

One way to understand interacting bosons is to find the corresponding classical system and 
study its low energy collective motions. Then we can quantize those low energy classical motions 
to obtain low energy quantum properties. This way, we can gain a understanding of the low energy 
properties of the quantum interacting boson system. 

To obtain the corresponding classical system for interacting bosons, let us first find out how to 
represent the boson density in the classical field theory. We know that if the potential U by δU , 
the change in the total energy of the bosons will be δEtot = NδU where N is the total number of 
the bosons. From eqn (4.7.3) we see that δEtot = 

� 
ddx φ∗φδU . So the total number of the bosons 

is given by N = 
� 

ddx φ∗φ in field theory and the boson density is 

n(x) = φ∗(x)φ(x) 

The total potential energy can be rewritten in terms of the boson density 

1� 
V (xi − xj ) = 

� 
dd xdd x� 

2 
n(x)V (x − x�)n(x�) 

i<j 

This allows us to guess that the classical field theory for interacting bosons to have a modified total 
energy � 

dd xdd x� φ(x) 2 V (x − x�) 
2 

2∂xdd 2φ(x�) (4.9.2)x φ∗ + U φ +Etot = − | | | |
2m 

and hence a modified Lagrangian 

φ − φ∗ φ

1 

x i φ∗φ̇− Etot i φ∗ ˙dd dd 2∂x + UL = = −x 
2m 

2− 
� 

dd xdd x� |φ(x)|2 V (x 

2
− x�) |φ(x�)| (4.9.3) 

The corresponding equation of motion can be obtained from L and is given by 

1

i φ̇(x, t) = 2∂x + Ueff(x) φ(x, t)− 

2m 

2dd x� �) φ(x�)Ueff(x) = U + V (x − x (4.9.4)| | 

We note that eqn (4.9.4) is a non­linear equation. So the interacting bosons are described by a 
non­harmonic field theory. 

44 



� � 

Problem 4.9.1 
Following the discussion in section 2.3.2 to derive the equation of motion (4.9.4) from the Lagrangian (4.9.3). 

Problem 4.9.2 
Symmetry and conservation: 
(a) Derive the equation of motion (4.9.4) from the Lagrangian (4.9.3). 
(b) The Lagrangian (4.9.3) is invariant under a U(1) transformation φ e iθ φ. Show that the particle number 

d 
→

is conserved for such a system, i.e. dt 

� 
ddx |φ|2 = 0. 

(c) We include a term 
� 

ddx g(φ + φ∗) in the Lagrangian to break the U(1) invariance. Show that the particle 
number is no longer conserved for the new system. 

Problem 4.9.3 
In this section we have “guessed” the classical field theory (4.9.3) or (4.9.4) for the interaction bosons. In fact the 
classical wave equation (4.9.4) can be “derived” using the equation­of­motion approach described in section 2.6.1 

H ˆ Hfrom the second quantized Hamiltonian (4.8.7). Find the operator equation of motion for φ̂(x, t) ≡ e i ˆ
φ(x) e− i ˆ

ˆusing ∂tφ̂(x, t) = i [H, φ̂(x, t)]. Replace φ̂ and φ̂† by φ̂ = φ and �φ̂†� = φ∗ to obtain the corresponding classical 
equation of motion. 

4.10 A quantum phase transition in interacting boson system 

Instead of directly studying the very difficult quantum interacting boson system (4.9.1), in the 
next a few sections, we will study the corresponding classical field theory (or the non­harmonic 
brane) described by eqn (4.9.3). The classical field theory is much easier to deal with. The physical 
properties of the classical field theory will give us some good ideas about the physical properties of 
the quantum interacting bosons. 

Since it encodes both coordinates and momenta, the complex field φ describes a classical state 
in the classical field theory. That is each different complex function φ(x) correspond to different 
classical state. So looking for a classical ground state is equivalent to looking for a complex function 
that minimize the total energy (4.9.2). 

x ∂xφ∗∂xφWe note that a constant function minimize the kinetic energy term 
� 

ddx φ∗ −∂2 
φ = 

� 
ddx .2m 2m 

So if the interaction V is not too large, we may assume the function that minimize the total energy 
is a constant. In this case the energy density becomes 

u = U |φ|2 +
1 
V̄ φ 4 

2 
| |

¯where V ≡ 
� 

ddx V (x). 
¯When V < 0, we note that the total energy Etot = 

� 
ddx u is not bound from below and has 

no minimum. So the ground state of boson gas with attractive interaction is well defined.3 When 
¯ V > 0, we find that the total energy is minimized by the following field (or the classical state) 

�
0, U > 0 

φgrnd = ¯ (4.10.1)�
−U/V , U < 0 

This field corresponds to the classical ground state of the system. The ground state energy density 
is �

0, U > 0 
u = ¯ (4.10.2) − 1 U2/V , U < 02 

3Here we just pointed out a mathematical inconsistence of a particular mathematical description of an attractive 
boson gas. It is interesting to think physically what really going to happen to a chamber of boson gas with an 
attractive interaction? 
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Remember that U is the potential experienced by a boson and V ̄ characterize the interaction 
between two bosons. eqn (4.10.2) tells that how the ground state energy density depends on those 
parameters. Because the ground state is the state at zero temperature, how ground state energy 
depends on those parameters will tell us if there are quantum phase transitions4 or not. As we 
change the parameters that characterize a system, if the ground state energy changes smoothly, 
we will say that there is no quantum phase transition. If the ground state energy encounter a 
singularity, the singularity will represent a quantum phase transition. From eqn (4.10.2) we see 

¯that there is a quantum phase transition at U = 0 if V > 0. Since it is the second order derivative 
∂2u/∂U2 that has a discontinuity, the phase transition is a second order phase transition. The 
phase for U > 0 contains no bosons since it cost energy have a boson. The phase for U < 0 has a 
non­zero boson density n = −U/V ̄ . This is because for negative U the system can lower its energy 
by having more bosons. But if there are too many bosons, there will be large cost of interaction 
energy due to the repulsive interaction between the bosons. So the density n = −U/V ̄ is a balance 
between the potential energy due to U and the interaction energy due to V ̄ . Later we will see that 
the phase with non­zero φ is a superfluid phase. It is also called the boson condensed phase. 

We would like to remark that the eqn (4.10.2) is really the ground state energy density of 
the classical field theory. It is an approximation of the real ground state energy density of the 
interaction boson system. So we are not sure if the real ground state energy density contains a 
singularity or not. Even if the singularity does exist, we are not sure if it is the same type as 
described by eqn (4.10.2). A more careful study indicates that the real ground state energy density 
of the interaction boson system does have a singularity that is of the same type as in eqn (4.10.2) 
if the dimensions of the space is 2 or above. In 1D, the real ground state energy density has a 
singularity at U = 0 but the form of the singularity is different from that in eqn (4.10.2). 

4.11 Continuous phase transition and symmetry 

• Two mechanisms for phase transitions. 

• A continuous phase transition is a symmetry breaking transition. 

• The concept of order parameter. 

We know that ground state energy (4.10.2) is obtained by minimizing the energy functional 
(4.9.2). U and V ̄ are the parameters in the energy functional. Can we have a more general and 
a deeper understanding when the minimum of an energy functional has a singular dependence on 
the parameters in the energy functional? 

Let us consider a simpler question: when the minimum of an energy function has a singular 
dependence on the parameters in the energy function? To be concrete, let us consider a real function 
parameterized by a, b, c, d (where d > 0): 

Eabcd(x) = ax + bx2 + cx 3 + dx4 (4.11.1) 

Let E0(a, b, c, d) be the minimum of Eabcd(x). How can the minimum E0(a, b, c, d) to have a singular 
dependence on a, b, c, d, knowing that the function Eabcd(x) itself has no singularity. 

One mechanism for generating singularity in E0(a, b, c, d) is through the “minima switching” as 
shown in Fig. 4.9. When Eabcd(x) has multiple local minima, a singularity in the global minimum 
E0(a, b, c, d) is generated when the global minimum switch from a local minimum to another. The 
singularities generated by “minimum­switching” always correspond to first order phase transitions 
since the first order derivative of of the ground state energy E0 is discontinuous at the singularities. 

4A quantum phase transition, by definition, is a phase transition at zero temperature. 
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Figure 4.9: The energy function Ea(x) ≡ Ea,−1,0,1(x) = ax−x2 + x4 with b = −1, c = 0, and d = 1. 
(a) Ea(x) for a > 0 and (b) for a < 0. EA and EB are the energies of the two local minima. The 
global minimum switch from one local minima to the other as a passes 0. (c) The global minimum 
E0(a) has a singularity at a = 0. 

Figure 4.10: The energy function Eb(x) ≡ E0,b,0,1(x) = bx2 + x4 with a = 0, c = 0, and d = 1 has 
x symmetry. (a) Eb(x) for b > 0 and (b) for b < 0. (c) The global minimum E0(b) has a a x → −

singularity at b = 0. 

When energy function has a symmetry, there can be another mechanism for generating sin­
gularities in the ground state energy. The energy function Eabcd(x) has a x → −x symmetry if 
a = c = 0. For such a symmetric energy function, the single minimum at the symmetric point x = 0 
for positive b splits into two minima at x0 and −x0 as b decreases below 0 (see Fig. 4.10). The 
shifting from the single minimum to one of the two minima generate the singularity in ground state 
energy E0(b) at b = 0. We will call such a mechanism “minimum­splitting”. “Minimum­splitting” 
always generate continuous phase transitions. This is because the minima before and after the 
transition are connected continuously (see Fig. 4.11). 

We would like to stress that the x → −x symmetry in the energy function E0b0d(x) is crucial 
for the existence of the continuous transition caused by the “minimum­slitting”. Even a small 
symmetry breaking term, such as the ax term, will destroy the continuous transition by changing 
it into a smooth cross­over or a first order phase transition. 

When the energy function has a symmetry, one may expect that the minimum (i.e. the ground 

Figure 4.11: Trace of the positions of the minimum/maximum of Eb(x) as we vary b. The solid 
lines represent minima and the dash line represents the maximum. The single minimum for b > 0 
splits continuously into two minima when b is lower below zero. The solid curve also shows how 
the order parameter x becomes non zero after the phase transition. 
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Figure 4.12: The shape of the energy function (4.9.2) for a uniform φ when U < 0. The dot 
¯represents one ground state φ = 

�
−U/V and the think circle represents the infinitely many 

¯degenerate ground states φ = e i θ 
�
−U/V , 0 < θ < 2π. 

state) also has the symmetry. In our example Fig. 4.10, when b > 0 the ground state of Eb (given 
by x = 0) indeed has the x→ −x symmetry (see Fig. 4.10a). However, after the phase transition 
(i.e. when b < 0), the new ground state no longer have the x → −x symmetry despite the energy 
function continues to have the same symmetry. Under the x→ −x transformation, the new ground 
state is changed into another degenerate ground state (see Fig. 4.10b). This phenomenon of ground 
state having less symmetry than the energy function is called spontaneous symmetry breaking. Our 
example suggests that the continuous phase transition (caused by the “minimum­splitting”) always 
changes the symmetry of the ground state. So such a transition is also called symmetry breaking 
transition. 

Our simple example (4.11.1) reflects a general phenomenon. The picture described above also 
applies to more general energy functional such as eqn (4.9.2). It is a deep insight by Landau [Landau 

1937; Landau and Lifschitz 1958] that the singularity in the ground energy (or the free energy) is intimately 
related to the spontaneous symmetry breaking. This leads to a general theory of phase and phase 
transition based on symmetry and symmetry breaking. Within such a theory, we can introduce an 
order parameter to characterize different phases. The order parameter must transform non­trivially 
under the symmetry transformation. In our example Fig. 4.10, we may choose x or x3 as the order 
parameter, since they both change signs under x→ −x transformation. In the symmetry unbroken 
phase, the order parameter x = 0. In the symmetry breaking phase, the order parameter is non­
zero x = 0. The continuous phase transition is characterized by the order parameter acquiring a 
non­zero value. Landua’s symmetry breaking theory is so general and so successful that for a long 
time it was believed that all continuous phase transitions are described by symmetry breaking. 

In our field theory description of interacting bosons, the energy functional (4.9.2) has many 
symmetries, which include a U(1) symmetry φ e i θ φ and a translation symmetry x x + a.→
The phase φ = 0 (for U > 0) is invariant under both the transformations φ e i θ φ and x

→ 
x + a. 

¯ 
→ →

Thus the φ = 0 break no symmetries. The phase φ = 
�
−U/V (for U < 0) is invariant under 

the translation x x + a but not the U(1) transformation φ e i θ φ. So the φ = 0 phase break → → 
¯the U(1) symmetry spontaneously. Under the U(1) transformation, φ = 

�
−U/ 

�
V is changed to 

¯ φ = e i θ 
�
−U/V which corresponds to one of the infinitely many degenerate ground states (see Fig. 

4.12). According to Landau’s symmetry breaking theory, the two phases, φ = 0 and φ = 0, having 
different symmetries, must be separated by a phase transition. 

After understanding the above two mechanism which generate first order phase transitions and 
continuous phase transitions, one may wonder “is there a third mechanism for the singularity in 
the ground state energy?” If you do find the third mechanism, it will represent a new type of phase 
transitions beyond Landau’s symmetry breaking theory! 

Problem 4.11.1 

48 



� � 

� � �


� � � 

� � 

Show that if we include a term h 
� 

ddx (φ + φ∗) in the energy functional (4.9.2) to explicitly break the U(1) 
symmetry, 5 the continuous transition cause by changing U will change into a smooth cross­over no matter how 
small h is. 

Problem 4.11.2 
Adding h 

� 
ddx (φ + φ∗) term in eqn (4.9.2) completely breaks the U(1) symmetry and destroys the continuous 

phase transition. Show that adding h2 
� 

ddx (φ2 + c.c.) term in eqn (4.9.2) breaks the U(1) symmetry down to a 
Z2 symmetry, i.e. the resulting energy functional is still invariant under φ → −φ. Study the phase and the phase 
transition in the resulting Z2 symmetric system. Show that the Z2 symmetry in the energy functional allows a 
continuous phase transition. 

4.12 Collective modes – sound waves 

• Small fluctuations around the ground state have a wave­like dynamics. 

• The fluctuations around the symmetry breaking ground state have a lin­
ear dispersion for small k. Those fluctuations are called sound waves. 

For our interacting boson system (4.9.2), the (classical) ground states in the symmetric phase 
¯ φgrnd = 0 and in the symmetry breaking phase φgrnd = 

�
−U/V are very different. As a result, the 

collective excitations above the ground states are also very different. 

The collective fluctuations around the ground state are described δφ = φ−φgrnd. The equation of 
motion for δφ that describes the classical dynamics of the fluctuations can be obtain by substituting 
φ = δφ + φgrnd into eqn (4.9.4). 

To simplify our calculation, we assume the interaction potential V (x − x�) is short ranged and 
approximate it by V (x − x�) = gδ(x − x�). The wave equation (4.9.4) and the energy (4.9.2) are 
simplified to 

1
i φ̇(x, t) = 2∂x 

2φ(x) φ(x, t) (4.12.1)+ U + g− | |
2m 

and 
2∂x + U + 

g 
2

dd 2 (4.12.2)x φ∗Etot φ φ.=
 − | |
2m 

The Lagrangian (4.9.3) is simplified to 

2∂x 

2m

g

2


i φ∗φ̇− φ∗(−dd x
 4+ U)φ − (4.12.3)
L = |φ| .


Let us first discuss the equation of motion of δφ in the symmetry breaking phase φgrnd = 
�
−U/g 

for U < 0 (see eqn (4.10.1) and note that V ̄ = g). Substituting φ = δφ + 
�
−U/g into eqn (4.12.1), 

we find 

1

i δ̇φ = 2∂x − U
 δφ − Uδφ∗−

2m 

Since we are interested in low lying fluctuations, we can assume δφ to be small. So in the above 
equation, we have only kept the terms linear in δφ. Separating δφ into real and imaginary part: 

Changing the symmetry of the energy functional (or the Hamiltonian) is called explicit symmetry breaking, which 
should not be confused with the spontaneous symmetry breaking. A spontaneous symmetry breaking refers a change 
in the symmetry of the ground state with the symmetry of the energy functional (or Hamiltonian) unchanged. 
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� 

1φ = √
2 
(δh + i δp), we rewrite the above equation as 

� 
1 
∂2 

� 

−δṗ = x − 2U δh −
2m 

δḣ = −
2
1 
m
∂2 

xδp 

¨ ˙From δh = − 1 ∂2 δp, we find 2m x 

1 
� 

1 
∂2 

�
¨ δh =

2m
∂2 −

2m x − 2U δh (4.12.4)x 

We see that the equation of motion that describe the weak fluctuations is a linear wave equation. 
The solutions of eqn (4.12.4) are of form δh = Re(C e i k x− i ωkt). The dispersion relation of the ·

wave is 
|
2m 

2 
− 2U

� 

= 

� 
|k|2 

� |k|2 
+ 2ng 

� 

(4.12.5)ωk = 

� 
|k|2 

� 
k|

2m 2m 2m 

where the n = φgrnd
2 is the boson density. For small k, we find a linear dispersion | |

� 
−U 

� 
gn0

ωk = v|k|, v = 
m 

= 
m 

where v is the velocity of the fluctuating wave. Such a wave in the symmetry breaking phase is 
called the sound wave in the superfluid. 

In the symmetric phase φgrnd = 0 for U > 0, the equation of motion of δφ = φ − φgrnd = φ is 

i δ̇φ = 

� 

−
2
1 
m
∂2 + U δφ x 

if we ignore the higher order terms in δφ. The solutions have a form δφ = C e i k x− i ωkt . The·

dispersion relation of the wave is 

ωk = 
|k|2 

+ U (4.12.6)
2m 

4.13 Quantized collective modes – phonons 

Waves = collection of oscillators. •
Quantized waves = quantized oscillators = free phonons. •

• Phonons are a new type of bosons, completely different from the original 
interacting bosons that form the superfluid. 

• The emergence of phonons is the simplest example that completely new 
types of particles can emerge from collective fluctuations. 

We know that a wave with a dispersion ωk can be viewed as a collection of oscillators.6 Assuming 
the space to be a d­dimensional cube of volume V = Ld, then the wave vectors of the wave are 

2πquantized: k = L (n1, n2, · · · ). Each quantized wave vector labels an oscillator. The frequency of 
the oscillator k is ωk. 

6We will show explicitly how a wave is related to a collection of oscillators in section 4.14. 
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Figure 4.13: The gapless phonons are fluctuations between degenerate ground states. 

After identifying the wave (the collections modes) as a collection of oscillators, the quantum 
theory for the collective modes can then be obtained by quantize those oscillators. The eigenstates 

ph 
k 

ph 
kof the oscillator k is given by with energy n ωk. So the energy eigenstates for the collection |n


of the oscillator are labeled by a set of integers {n
The energy of such a state |{n }� is �k n

ph 
k 

wave vectors. 

ph 
k 

ph 
k }�, where k runs over all quantized wave 

where 
�

k sums over all the quantized 

:} |{n
ph 
k ωvk vectors. 

In the symmetry breaking (the superfluid) phase for U < 0, ωk is given by eqn (4.12.5). In the 
symmetric phase for U > 0, ω is given by eqn (4.12.6). The low energy eigenstates are labeled 

The energies of those eigenstates are 
�

k n
k 

ph 
k 

ph 
kby a set of integers {n

the low energy eigenstates and their eigenvalues of the very complicated interacting bosons system 
ωvk. This way we obtain }. 

described by eqn (4.9.1) (or eqn (4.8.5)). Through the classical picture, we are able to obtain the 
low lying energy eigenstates and their eigenvalues of the Hamiltonian eqn (4.9.1)! 

ph 
k as the occupation number of a kind of bosons at the k­level, then the If we interpreted n

collection of the quantum oscillators can also be viewed as the system of free bosons with a dispersion

k (see section 4.3). This is quite amazing. We start with an interacting bosons. At the end, we
ω


find the low energy excitations of the interacting boson system are described by a free boson system. 
The distinguish the two kinds of bosons, we will call the free bosons that describe the low lying 
excitations emergent bosons. 

But what are the emergent bosons? In the symmetric phase, the emergent bosons have the 
2k| |

2mdispersion ω + U , which is exactly the same is the dispersion of the original bosons. In fact, =
k 

in the symmetric phase, the emergent bosons are the original bosons. This is because the ground

ph 
k 

ph 
kstate for the symmetry phase, |{n

is identical to the occupation number n
0}� is the state with no original bosons.


of the original bosons. For the low energy excitations,

in this case
= n

k 
ph 
konly few n ’s are non­zero, which correspond to a dilute gas of the original bosons. In this limit, 

the interactions between the original bosons can be ignore and the original bosons become the free 
emergent bosons. 

However, in the symmetry breaking phase, the emergent bosons have a linear dispersion for 
ph 
k of the small k’s, which is very different from the original bosons. The occupation numbers n

emergent bosons is not related to the occupation numbers nk of the original bosons. In fact, since 
φgrnd = 0 and the original bosons have a finite density, the interaction between the original bosons 
cannot be ignored. In this case, the occupation numbers nk of the original bosons are not even well 
defined, i.e. the energy eigenstates do not have a definite occupation numbers nk (although they


ph 
kdo have a definite occupation numbers n for the emergent bosons). Since the emergent bosons 

are completely different from the original bosons, we will give the emergent bosons a new name: 
phonons. 

We note that phonons are gapless excitations above the superfluid ground state. We like to 
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�

pointed out that Gapless excitations are very rare in nature and in condensed matter systems. 
Therefore, if we see gapless excitations, we should to ask why do they exists? 

One mechanism for gapless excitations is spontaneously breaking of a continuous symmetry. As 
discussed in section 4.11, the superfluid phase spontaneously break the U (1) symmetry: the energy 
functional has the U (1) symmetry: Etot[φ(x)] = Etot[e i θ φ(x)] while the ground state does not: 
φgrnd = e i θ φgrnd. Only in this case, do the gapless excitations exist. 

Intuitively if a symmetry (continuous or discrete) is spontaneously broken, then the ground 
states must be degenerate (see Figs. 4.10b and 4.12). The different ground states are related by 
the symmetry transformations. So the spontaneous breaking of continuous symmetry gives rise to a 
continuous manifold of degenerate ground states. The fluctuations between the degenerate ground 
states correspond to the gapless excitations (see Fig. 4.13). Nambu and Goldstone have proved 
a general theorem: if a continuous symmetry is spontaneously broken in a phase, the phase must 
contain gapless excitations [Nambu 1960; Goldstone 1961]. Those gapless excitations are usually called the 
Nambu­Goldstone modes. The gapless phonon in the superfluid is a Nambu­Goldstone mode. In 
the next section, we will give a explicit discussion of the relation between the spontaneous U (1) 
symmetry breaking and the gapless phonons. 

4.14 *An oscillator picture for the sound wave 

• A derivation of the oscillator picture for the sound wave allows us to 
express the physical quantities of the original bosons, such the boson den­
sity, in terms of the oscillator variables. This will allow us to calculate 
physical properties of interacting bosons using simple oscillators. 

The sound waves in the symmetry breaking phase are described by a collection of oscillators. 
To show the explicit relation between the sound waves and a collection of oscillators, we start with 
the field theory Lagrangian (4.12.3) for interacting bosons. Since the sound waves are described 
by the small fluctuations δφ = φ − φgrnd, we can rewrite (4.12.3) in terms of δφ to obtain the 
Lagrangian for the sound waves. However, to make the U (1) symmetry: φ e i ϕφ more explicit, →
we will instead use (θ, ρ) to describe the fluctuations around the ground state φgrnd = 

�
−U/g. 

(θ, δn) are defined through 
φ(x, t) = 

�
n0 + δn(x, t) e i θ(x,t) 

where n0 = −U/g is the boson density in the ground state. 

To the quadratic order in (θ, δn), eqn (4.12.3) becomes 

n0(∂xθ)2 (∂xδn)2 g
L = 

� 
dd x [−(n0 + δn)∂tθ − − 

8mn0 
− 

2 
δn 2]. (4.14.1)

2m 

The invariance of eqn (4.12.3) under the U (1) transformation φ e i ϕφ implies that eqn (4.14.1) →
is invariant under θ(x, t) → θ(x, t) + ϕ. This is why the Lagrangian (4.14.1) contains no θ2 term. 
The absence of the θ2 term, as implied by the U (1) symmetry, will leads to gapless excitations. 

Introducing7


1

δϕ =

2
√
n0 
δn + i 

√
n0θ 

we can rewrite eqn (4.14.1) as 
� 

∂2 � �
xL = 

� 
dd x 

� 

i δϕ∗δϕ̇− δϕ∗ − 
2m 

+ gn0 δϕ − gn0Re(δϕ2) . (4.14.2) 

7δϕ defined this way is equal to δφ up to the linear order in δφ: δϕ = δφ + O(δφ2). 
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where we have dropped some total time derivative terms. The equal coefficient in the front of the 
two terms δϕ∗δϕ and Re(δϕ2) is a consequence of the U(1) symmetry. 

Let us expand the above Lagrangian in terms of k­modes. We can expand φ(x) as 

i kδϕ(x) = 
� 

V−1/2 e ·xδϕk 

k 

In terms of ϕk, the Lagrangian for the sound wave takes a form 

2 

L = 
�� 

i δϕ∗ k 

� |k|
+ gn0 

� 

δϕk − 
gn0 (δϕ−kδϕk + δϕ∗ 

k) . (4.14.3)kδϕ̇k − δϕ∗ −kδϕ
∗

2m 2 
k 

If we ignore the term gn0 (δϕ−kδϕk + δϕ∗ δϕ∗k), then each term in the sum 
�

k2 −k

2 

kδϕ̇k − δϕ∗Lk = i δϕ∗ k 

� |k|
+ gn0 δϕk (4.14.4)

2m 

will describe a decoupled harmonic oscillator where the real part of δϕk corresponds to the coor­
dinate and the imaginary part of δϕk corresponds to the momentum of the oscillator. The term 
g 
2 (δϕ−kδϕk + δϕ∗ δϕ∗−k k) couples the oscillator k to the oscillator −k. So eqn (4.14.3) describes a 
collection of coupled oscillators. 

But we can choose a different set of variables to obtain a set of decoupled oscillators. Since the 
mixing is between the k­mode and the −k­mode only, let us introduce 

ak = ukϕk + vkδϕ−k 

One can show that, up to a total time derivative term, 
� 

a∗ ȧk = 
� 

ϕ∗ ϕ̇kk k 
k k 

if 
2 uk| − |vk

2 = 1, u∗ = 0. (4.14.5)kvk − u−kv
∗| | −k 

One can also show that 

� 
Eka

∗
2 

−kδϕ
∗

� 

kak = 
��

δϕ∗
� |k|

+ gn0 

� 

δϕk + 
gn0 (δϕ−kδϕk + δϕ∗ 

k) (4.14.6)k 2m 2 
k k 

if one chooses 

k 2| + gn0 1 k|2 
+ gn0 1 

uk = 

� 
|
2m +

2 
, vk = 

� 
|
2m 

2 
,

2Ek 2Ek 
− 

2 
�2 

Ek = 

�� |k|
+ gn0 − (gn0)2 . (4.14.7)

2m 

So in terms of ak, the Lagrangian has a form 

L = 
� 

( i a∗ ˙ kak)kak − Eka
∗

k 

which describes a collection of decoupled oscillators. 
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To show that the term 
Lk = i a∗ ˙ kakkak − Eka

∗

describes a single harmonic oscillator, we introduce ak = 2−1/2(Xk + i Pk) and rewrite Lk as (up 
to a total time derivative term) 

KkX
2 

Lk = PkẊk − 

� 
Pk 

2 
k 

�
+

2Mk 2 

where Mk = 1/Ek and Kk = Ek. We see that Lk is a phase­space Lagrangian that describes an 
oscillator of mass Mk and spring constant Kk. The oscillation frequency is 

2 
�2 

ωk = 

� 
Kk = Ek = 

�� |k|
+ gn0 − (gn0)2 

Mk 2m 

which agrees with eqn (4.12.5). 

We note that in the expression of Ek (4.14.7), the first gn0 comes from the coefficient in front of 
the δϕ∗δϕ term in eqn (4.14.2). The second gn0 comes from the coefficient in front of the Re(δϕδϕ) 
term in eqn (4.14.2). We see that the equal coefficient in front of δϕ∗δϕ and Re(δϕ2) makes Ek 

as k 0. The U(1) symmetry protects the gapless excitations in the superfluid phase. 
→ 

→ 

Problem 4.14.1 
Show eqn (4.14.5) and eqn (4.14.6). 

Problem 4.14.2 
Adding h2 

� 
ddx (φ2 + c.c.) term to eqn (4.12.3) breaks the U(1) symmetry down to a Z2 symmetry. The 

resulting system still has two phases, one breaks the Z2 symmetry and the other does not. Show that the 
collective excitations in both phases have an energy gap. Show that the energy gap of the excitations approach 
to zero as we approach the continuous phase transition between the two phases. 
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