8.08 Problem Set # 9

April 6, 2005 Due April 13, 2005

Problems:

1. Consider an interacting bosonic gas in 1D. The Ginzburg-Landau free energy is given by

$$A = \int_{-\infty}^{+\infty} dx \; \left(\frac{1}{2m} |\partial_x \psi|^2 + \left(\frac{a(T)}{2} + U(x)\right) |\psi|^2 + \frac{b}{4} |\psi|^4\right)$$

Where ψ is the amplitude of condensed bosons (the order parameter) and $a(T) = a_0(\frac{T}{T_c} - 1)$ for T near T_c . Here a_0 , b and m are constants. The external potential U(x) has the following form

$$U(x)|_{x<0} = +\infty, \qquad U(x)|_{x>0} = 0$$

(a) Show that there is a boson condensation for $T < T_c$ and find the amplitude of condensed bosons $\psi(x)$ for $x \to +\infty$.

(b) Near x = 0, the amplitude of condensed bosons is suppressed by the potential U(x). To gain a more quantitative understanding of the suppression, we assume $\psi(x)$ to have a form

$$\psi(x)|_{x<0} = 0, \qquad \psi(x)|_{0$$

We want to adjust ξ to minimize the total free energy for the above form of boson condensation. Calculate the ξ dependence of the free energy. Find the value of ξ that minimizes the free energy.

(c) Show that near T_c , ξ diverges as $\xi \propto |T_c - T|^{\nu}$. Find the critical exponent ν .

(The length scale ξ is called the coherent length. It is a very important length scale in superfluid. For example, the size of the vortex core is given by ξ .)

- 2. Problem 8.2 in K. Huang's book.
- 3. Problem 8.3 in K. Huang's book.
- 4. Problem 9.4 in K. Huang's book.