
Classical Mechanics III (8.09) Fall 2014  
Assignment 10  

Massachusetts Institute of Technology 
Physics Department Due Fri. December 5, 2014 
Fri. November 28, 2014 6:00pm 

Announcements 

This week we continue our study of nonlinear dynamics and chaos, including bifurcations 
and limit cycles, followed by chaos in maps, fractals, and strange attractors. 

Reading Assignment 

•	 Read the posted sections from Chapter 3 of Strogatz on Bifurcations. 

•	 Read the posted sections from Strogatz on fixed points in two dimensions and limit 
cycles: 5.1-5.3, 6.1-6.5, 7.1-7.3, 8.1-8.2, and 8.4 (also have a look at 5.3 on love affairs, 
and 6.7 for pendulum phase space on a cylinder if you like). 

•	 Read Goldstein section 11.8 on the logistic map, and section 11.9 on fractals. 
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Problem Set 10 

These 5 problems are on nonlinear dynamics and chaos. 

1. Classifying Fixed Points [8 points] 
Find all fixed points of the following system: 

ẋ = x(4 + y − x 2) , ẏ = y(x − 1) 

Determine their stability and type, and use this information to sketch trajectories for 
this system in the (x, y) plane. Find the corresponding eigenvectors for cases where 
this gives useful information. 

2. Bead on a Rotating Hoop [15 points] 
Consider a bead of mass m on a hoop of radius a with friction coefficient β > 0. The 
hoop is vertical and rotates about the z-axis with constant angular velocity ω0, so 
that the bead’s equation of motion is   g¨ ma θ = −β θ̇ + maω0

2 sin θ cos θ − 
aω0

2 

We analyzed this problem in lecture for extreme overdamping where we neglected the 
¨ θ term. Here you will analyze the problem in two dimensions. 

(a) [2 points] Show that by suitable changes of variable the equations of motion can 
be written in the dimensionless form   

θ̇ = w , ẇ = sin θ cos θ − 
1 − bw 
γ

with γ > 0 and b > 0. Can you identify a symmetry of this system involving 
both variables? 

(b) [5 points] What are the fixed points if b = 0? If b  = 0? For both of these cases, 
classify the stability and type of all the fixed points with a linear analysis (only). 

(c) [5 points] Consider the undamped case b = 0. Demonstrate that the system is 
conservative and find a conserved quantity H(θ, w). Is your conserved quantity 
energy? Why or why not? By plotting curves of constant H draw the phase 
space trajectories in (θ, w). I suggest using mathematica or a similar program 
to make this plot. Be sure to also label the fixed points. 

(d) [3 points] Consider now b = 1 and γ = 2. Sketch a trajectory that starts near 
each stable fixed point. Sketch one trajectory that has an initial w(t = 0) that 
is large enough for the bead to go over the top of the hoop. [You could use 
NDSolve in mathematica to numerically solve the equations and accurately plot 
various trajectories, but you are not required to do so. If you choose to do this, 
try b = 1/2 too.] 
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3.	 Chaos in an Undamped Nonlinear Oscillator [10 points] 
You may have wondered if the damping was important in our discussion of chaos 
for the driven nonlinear oscillator. Consider the forced nonlinear oscillator without 
damping (quality q = ∞), which has 

θ̇ = w	 ˙, ẇ = − sin θ − a cos φ , φ = wD 

Start with the original mathematica code for the forced nonlinear oscillator from 
the website that you considered on problem set #9 (note that our wD = ω in the 
notebook). You can turn off damping by using the slide bar to set “Q = 0” (you may 
have noticed last week that there is an IF command present in the code that uses 
Q = 0 to set no damping). Take wD = 0.7. 

(a) [4 points] Use the	 code to create a bifurcation plot showing at least 0.1 < 
a < 2 (choose 300 intervals to get high resolution). Identify a value of a that 
corresponds to a periodic window in between chaotic regions. Show Poincaré 
sections to prove it. 

(b) [6 points] Examine the behavior more closely for small	 a’s. Start by looking 
closely at 0 < a < 0.1 (Make a bifurcation plot. Also consider other plots.) Are 
their chaotic values? For what value in 0 < a < 1 does chaos first appear? Be 
sure to test and justify your answer. 

4.	 Bifurcation of a Limit Cycle and Fixed Point [12 points] 
Consider a system governed by the equation 

ẍ+ a ẋ (x 2 + ẋ 2 − 1) + x = 0 

(a) [4 points] Let ẋ = w and form first order equations. Show that the system has 
a circular limit cycle for a = 0 and find its amplitude and period. (You can 
demonstrate that it is isolated using your results from part (c), so you should 
comment on this either here or in part (c).) 

(b) [4 points] Find and classify all the fixed points for	 a > 0, a < 0, and a = 0. 
Determine the stability in all cases. Determine the type of fixed point, but for 
cases which are on a borderline do not bother going beyond the linear analysis. 
Based on fixed point stability and the behavior of ẇ outside the limit cycle, 
make a proposal for when the limit cycle is stable, unstable, or half-stable. 

(c) [4 points] Change variables to polar coordinates,	 x = r cos θ and w = r sin θ. 
Derive a first order equation for ṙ and use it to prove your claim from (b). Thus 
determine a bifurcation point for the limit cycle and fixed point. What would 
be a reasonable name for this bifurcation? 
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5. Chaos in Maps [15 points] 
We have seen that chaos from 1st order differential equations requires 3 variables 
and nonlinearity. Instead consider a discrete set of points {xn} determined by a 
map, xn+1 = f(xn). Here chaos can occur for a nonlinear function f(x) with only one 
variable x. You can picture why this might be the case by recalling that for the driven 
damped nonlinear oscillator we saw chaos when we plotted a discrete set of points ωn 
versus the control parameter a (with values obtained from Poincaré sections). 
In this problem you will numerically explore some features of one dimensional maps 
by making use of the mathematica code that is available on the course website. (Print 
any plots and attach them to your pset.) We will also discuss maps in lecture, but 
this problem is designed so that you can solve it without use of any lecture material. 

Perhaps the simplest map that  
exhibits chaos is the Logistic Map  

xn+1 = r xn (1 − xn) 

where r is a fixed control parame­
ter. The figure shows its bifurca­
tion plot obtained by discarding  
x0 to x299 and plotting x300 to x600  
for many different r values. Code  
for this plot is on the website.  3.0 3.2 3.4 3.6 3.8 4.0
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Image is in the public domain.

Just like differential equations, maps contain attractors, so after transients have died 
out the values will be independent of the initial condition x0. We see a period doubling 
road to chaos (compare this to the bifurcation plot for our driven damped nonlinear 
oscillator). 

Lets start with a few problems on the Logistic Map: 

(a) [3 points] To test the sensitivity to initial conditions compute the set of points 
{xn} and {x� }, starting with two nearby values x0 and x0

� respectively. Considern

one value of r where the map becomes periodic, and one value of r where it is 
chaotic. For both r values plot the difference of your lists {xn − x� }, being n

sure to plot to large enough n that you see the expected outcome. For the 
chaotic case, how close do you have to take x0 − x0 if you want to ensure that 
|x15 − x15

� | < 10−6 ? 
(b) [4 points] By adjusting the plot region (and perhaps using mathematica’s “get 

coordinates” feature obtained by a right-click of the mouse) find the first four x 
values where bifurcations occur. Call them a1,2,3,4 and compute two values for 
(an − an−1)/(an+1 − an), which should agree (say with at least two significant 
digits). This is a small n approximation to Feigenbaum’s number which is the 
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constant obtained by taking the n → ∞ limit. It is a universal constant charac­
terizing the period doubling route to chaos in many chaotic systems. (Your task 
is much simpler than it was for Feigenbaum, who did his computations with a 
hand calculator.) 

(c) [3 points] Show	 that in the region after the first bifurcation, but before the 
second bifurcation, that the two values of x for the attractor satisfy 

r 3 x 2(2 − x) − r 2(r + 1)x + (r 2 − 1) = 0 

Finally lets explore bifurcation plots for a few other maps. 

(d) [5 points] Use the mathematica code to make bifurcation plots for the following 
three maps. All your plots should exhibit period doubling. Two of these maps 
are chaotic, and for them you should pick a range of r so that your plot includes 
both chaotic and non-chaotic regions. 

(i) xn+1 = r cos xn , (ii) xn+1 = rxn − xn 
3 , (iii) xn+1 = exp(−rxn) 
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