Classical Mechanics III (8.09) Fall 2014
 Assignment 4

Massachusetts Institute of Technology
Physics Department
Due October 6, 2014
September 29, 2014
6:00pm

Announcements

This week we finish our discussion of Rigid Bodies. We will then briefly discuss Oscillations, and at the end of the week will begin our discussion of Canonical Transformations.

Reading Assignment for this week

- The reading for Oscillations is Goldstein Ch. 6 sections 6.1-6.4.
- We will spend a few weeks on our next subject: Canonical Transformations, the Hamilton-Jacobi equations, and Action-Angle Variables. The complete reading for this material is Goldstein Ch. 9 sections 9.1-9.7, and then Ch. 10 sections 10.1-10.6, and 10.8.

Problem Set 4

In the first problem we look at a symmetric top, and in the final three problems we study oscillations.

1. A Heavy Symmetric Top [10 points]

A heavy symmetric top $\left(I_{1}=I_{2}\right)$ with one point fixed is precessing at a steady angular velocity Ω about the vertical fixed inertial axis z_{I}. The Euler angle coordinates are defined as in lecture (and Goldstein), and here $\dot{\theta}=0$. The top's mass is m and its center of mass is a distance R from the fixed point. Define $\omega^{\prime} \equiv \dot{\psi}$.
(a) [3 points] Determine the components of the torque in terms of Euler angles.
(b) [2 points] Write the angular velocities in terms of Euler angles. Explain why ω^{\prime} is constant in time.
(c) [5 points] Derive a minimum condition for ω^{\prime}. Describe what type of tops will satisfy this condition for all possible ω^{\prime} s.

2. Three Point Masses on a Circle [16 points]

Three particles of equal mass m move on a circle with radius a under forces that can be derived from the potential

$$
V(\alpha, \beta, \gamma)=V_{0}\left(e^{-2 \alpha}+e^{-2 \beta}+e^{-2 \gamma}\right) .
$$

Here α, β, and γ are the angular separations of the masses in radians as shown in the figure. An equilibrium position is indicated by the dashed lines and has $\alpha=\beta=\gamma=2 \pi / 3$.
(a) [6 points] Find the normal mode frequencies using the small amplitude approximation for oscillations about equilibrium. Determine the corresponding normalized normal modes.

(b) [3 points] What are the corresponding normal coordinates and equations of motion for the normal coordinates?
(c) [3 points] Sketch the corresponding motion for each normal mode.
(d) [4 points] Consider the following initial conditions at $t=0: \theta_{1}=\theta_{2}=\theta_{3}=0, \dot{\theta}_{1}=3 \omega_{0}, \dot{\theta_{2}}=-2 \omega_{0}$, and $\dot{\theta_{3}}=-\omega_{0}$. Use your results above to find $\theta_{i}(t)$ for $i=1,2,3$.

3. Small Oscillations of the Double Pendulum [14 points]

Consider the double pendulum in a plane that you analyzed on problem set \#1. Use results from that problem as a starting point for this one. Take $m_{2}=m$ and $m_{1}=3 m$.

a) [4 points] Make a small angle approximation for θ_{1} and θ_{2}, and determine results for the kinetic and potential energies which are quadratic in $\dot{\theta}_{i}$ and θ_{i}.
b) [4 points] What are the normal mode frequencies of this system? Confirm that the eigenvalues are positive and frequencies are real.
c) [6 points] Compute the corresponding eigenvectors and hence determine the normal modes. Sketch the corresponding motion of the pendulum for each one.
4. A Rigid Oscillating Bar [20 points] (Adapted from Goldstein Ch. 6 \#11)

Consider a thin uniform rigid bar of length $\mathrm{L}=2 \ell$ and mass m suspended by two equal springs with force constant k. In this problem we will consider the small oscillation modes of the bar in the plane. When the bar is at rest at equilibrium we have $\theta_{1}=\theta_{2}=\theta_{0}$ and $\phi=0$, and the length of the springs is a. At a given instant the bar has rotated about its center from a horizontal position by the angle denoted by ϕ.

(a) [7 points] What is the equilibrium length of the springs without the bar attached in terms of the given parameters? What are a suitable set of coordinates for describing the motion of the bar in the plane? Using these coordinates determine the Lagrangian $L=T-V$ (without making a small amplitude approximation).
(b) [5 points] Determine a suitable form for T and V to study small amplitude oscillations. Write your answer in terms of matrices that depend only on k, m, g, a, ℓ, and θ_{0}. For simplicity, to answer this problem and the problem below, assume θ_{0} is small and only work to linear order in θ_{0}.
(c) [8 points] What are the normal modes of small oscillation? Make a sketch of each of these oscillations. What would differ if $\theta_{0}=0$?

MIT OpenCourseWare
http://ocw.mit.edu

8.09 Classical Mechanics III

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

