
Chapter 7

Chaos and Non-Linear Dynamics

By a deterministic systems of equations, we mean equations that given some initial conditions
have a unique solution, like those of classical mechanics. In a deterministic system we will
define chaos as aperiodic long-term behavior that exhibits sensitive dependence on initial
conditions.

• Here “aperiodic behavior” means that phase space trajectories do not converge to a
point or a periodic orbit, they are irregular and undergo topological mixing (discussed
below).

• By “sensitive to initial conditions” we mean that trajectories that start nearby initially,
separate exponentially fast. Defining δ(t) as the difference between points on two such
trajectories at time t, then this means that |δ(t)| ∝ δ0e

λt for some λ > 0, as depicted
in Fig. 7.1.

Figure 7.1: The difference in initial condition leads to different orbits. Their difference is
given by δ(t), which grows exponentially with time.

This means that even though they are deterministic, chaotic systems are most often not
predictable. In particular, there will always be a small difference δ0 between the true and
measured initial conditions for the system (from statistical or systematic measurement error),
which grows exponentially to yield inaccurate predictions for predictions far enough in the
future.
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CHAPTER 7. CHAOS AND NON-LINEAR DYNAMICS

The sensitivity to initial conditions is important to chaos but does not itself differentiate
from simple exponential growth, so the aperiodic behavior is also important. In the definition
of this somewhat undescriptive phrase we include that the system should undergo Topological
Mixing. This means that any points starting in a region (open set) of the phase space will
evolve to overlap any other region of the phase space, so chaotic systems tend to explore a
larger variety of regions of the phase space.1

7.1 Introduction to Chaos

We will now explore some properties of non-linear dynamical systems, including methods to
characterize solutions, and the study of solutions with chaotic behavior.

7.1.1 Evolution of the system by first order differential equations

The dynamical system can be defined by a system of first order differential equations:

ẋ1 = f1(x1, . . . , xn)

ẋ2 = f2(x1, . . . , xn) (7.1)

...

ẋn = fn(x1, . . . , xn)

where the quantities xi, for i ∈ {1, . . . , n}, are any variables that evolve in time, which
could be coordinates, velocities, momenta, or other quantities. For our applications in this
chapter we will often assume that the xi equations are also chosen to be dimensionless, and
the procedure for this type of conversion will be discussed further below.

Example: the Hamilton equations of motion are 1st order equations in the canonical vari-
ables, so they are an example of equation of the form in Eq. (7.1) with an even number of
xi variables.

Deterministic evolution from the existence and uniqueness theorem

Assume that we have a set of differential equations in the form in Eq. (7.1), which we
can write in a shorthand as

˙ ~~x = f(~x) , (7.2)
∂f

and that fj and j (for i, j
xj

∈ {1, . . . , n
∂

}) are continuous in a connected region D ∈ Rn.

Then if we have an initial condition ~x(t = 0) = ~x0 ∈ D, then the theorem states that there
exists a unique solution ~x = ~x(t) on some interval (−τ, τ) about t = 0. Time evolution in
such a system is therefore deterministic from this existence and uniqueness theorem.

1For a dissipative chaotic system there are further restrictions on the choice of the open sets in this
definition of topological mixing since it is otherwise obvious that we could pick a region that the system will
not return to.
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For this chapter the damped nonlinear oscillator will be a good to base our discussion.
In the case of a pendulum with damping and a periodic driving force, its evolution is given
by the equation of motion:

2 ¨ ˙ml θ +ml2γθ +mgl sin(θ) = A cos(ωDt) , (7.3)

where ` is the length of the pendulum, θ is the oscillator angle, γ is the damping coefficient,
and A cos(ωDt) is the driving force. It is useful to turn this into a dimensionless equation.
First we divide by mgl to make the third term dimensionless, defining

A
a ≡ , (7.4)

mgl

to give a dimensionless amplitude for the forcing term. This leaves

l γl
θ̈ +

g
θ̇ + sin θ = a cos(ωDt) . (7.5)

g

Next to make the first term dimensionless we rescale the time derivatives so that they involve
a dimensionless time t′, and change to a dimensionless frequency ωD

′ for the forcing term via

t′ ≡
√
g
t , ω′
l D ≡

√
l du
ωD , u̇
g

≡ du
u̇

dt
⇒ ≡ . (7.6)

dt′

As indicated we also now let dots indicate derivatives with respect to the dimensionless time.
Finally we define

1

q
≡

√
l
γ , (7.7)
g

where q is the dimensionless quality factor for the damping term.
Dropping the newly added primes, our final differential equation is now fully dimension-

less:
1

θ̈ + θ̇ + sin(θ) = a cos(ωDt) (7.8)
q

Here a, q, and ωD are all dimensionless constants. We can convert this into 1st order form by
˙defining ϕ ≡ ωDt to get rid of the explicit time dependence in the forcing term, and θ ≡ ω

to eliminate the double time derivatives. This gives the system of three equations that are
in the form in Eq. (7.1) with ~x = (θ, ω, ϕ):

θ̇ = ω ,

1
ω̇ = − ω

q
− sin(θ) + a cos(ϕ) , (7.9)

ϕ̇ = ωD .
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7.1.2 Evolution of Phase Space

Phase space trajectories never cross

From the uniqueness theorem, phase space trajectories never cross. To prove this, note
that any point ~x(t) on a trajectory could be used as an initial condition for a new trajectory.
Since a point can only be part of one single trajectory, no crossings can occur.

Figure 7.2: By the uniqueness theorem, no two trajectories can cross, only come arbirtrarily
close.

Evolution of phase space volume

The phase space volume is given by:

V =

∫ n

V

∏
dxj (7.10)

j=1

Recall that for Hamiltonian systems, canonical transformations do not change volume ele-
ments. If we view this transformation as a solution for motion (via the H-J equation), then

˙it is clear that the motion generated by a Hamiltonian preserves the volume, so V = 0.
What happens with damping/friction (which is not in our Hamiltonian formalism)? To

determine the answer we can exploit an analogy with our results for changes in volume for
fluids:

∫ ẋ = (x) ⇔ ˙ ~v ~x = f(~x) , (7.11)

V̇ = dV ∇ · v ⇒ V̇ =

∫
dV ∇ · ~f .

where in the context of a general nonlinear system, ∇ refers to derivatives with respect to
~x. Thus we see that ∇ · ~f determines the change to a volume of our phase space variables.
For this reason we define ∇ · ~f = 0 as a conservative system (whether or not a general

Hamiltonian exists), while ∇ · ~f < 0 is a dissipative system where the phase space volume
shrinks.
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For our damped nonlinear driven oscillator example we have:

∂ω∇ · ~f =
∂θ

+
∂ 1

∂ω

(
− ∂

ω
q
− sin(θ) + a cos(ϕ)

)
ωD

+
1

=
∂ϕ

− < 0 , (7.12)
q

as expected for a dissipative system.
For the special case of q →∞ and a = 0 (undamped and undriven system), then:

θ̇ = ω , and ω̇ = − sin(θ) . (7.13)

The corresponding trajectories in phase space are illustrated below:
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Figure 7.3: Phase space picture of the undamped, unforced oscillator. Filled circles are the
stable fixed points and empty circles are the saddle points which are fixed points that are
unstable in one direction and stable in another.

7.1.3 Fixed Points

Of particular interest in a system are its fixed points, ~x?, defined as the locations where

~f(~x?) = 0 . (7.14)

At these points the state of the system is constant throughout time. Depending on the
behavior of the trajectories nearby the fixed point they can be characterized as:

• Stable - nearby trajectories approach the stable point
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• Unstable - nearby trajectories move away from the fixed point

• Saddle Point - in different directions trajectories can either approach or move away

For the undriven, undamped oscillator (Eq.(7.13)), the system has fixed points for ω = 0
and θ = nπ for any integer n. For this pendulum, the fixed point at the bottom θ = 2πn is
stable, while the fixed point at the top is unstable θ = π(2n+ 1), as shown in Fig. 7.3. Note
that this fixed point at the top is not a crossing trajectory because we can only get to this
point if E = 0 exactly, and in that case the trajectory would stop at this fixed point. Any
small perturbation knocks it off the unstable point at the top and determines which way it
goes.

If there is dissipation, then all trajectories in the neighborhood of a stable fixed point
converge upon it, so this region is called the basin of attraction and the fixed point is an
attractor ; energy dissipates as motion decays to the attractor. In our example it occurs if
q is finite, and the basins of attraction in this case are diagonal strips in phase space. The
result for two trajectories in phase space are shown below.
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Figure 7.4: With finite damping (q = 5) in our oscillator example the trajectories converge
to the stable fixed points of the system with spiraling motion.

Conditions for chaotic behavior

In general, two necessary conditions for chaos are:

• The equations of motion must be nonlinear. (For linear systems we already know the
solutions, which are exponential or oscillating and hence not chaotic.)
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• There must be at least 3 variables, so if i ∈ {1, . . . , n}, then n ≥ 3. (We will see why
this is necessary later.)

In our non-linear damped oscillator example, now including a non-zero forcing term gives
rise to a wider range of qualitative behaviors. In particular for certain values of (a, q, ωD)
the system can be chaotic.

If we start instead with the linearized version of the forced damped oscillator then we
have:

1
ω̇ = − ω − θ + a cos(ϕ) (7.15)

q

For this case the solution, which is non-chaotic, are well known and often studied in ele-
mentary courses in classical mechanics or waves. The general solutions come in three cases,
underdamped (q > 1/2), critically damped (q = 1/2), or overdamped (q < 1/2). For example
the general underdamped solution is given by:

t

θ(t) = Be− 2q cos

(
t

√
1

1− a
+ ϕ0

4q2

)
+
ωD

√ cos(ωDt
q−2 + (ωD

−1 − ωD)2

− δ) , (7.16)

where tan(δ) = ω 2
D/(q− qωD), and B and ϕ0 are constants that are determined by the initial

conditions. The first term in Eq. (7.16) is the transient that decays away exponentially,
whereas the second term describes the steady state forced motion (whose amplitude exhibits
resonant behavior at ωD = 1).

A projection of the trajectories into the 2-dimensional θ–ω plane, as shown in Fig. 7.5
shows that they converge onto ellipses after many cycles. This does not break the uniqueness
theorem since ϕ = ωDt is increasing, so the trajectory never crosses itself when all three
variables are plotted. If restrict ϕ ∈ [0, 2π] then the trajectory converges to a closed orbit.
Note that the nonlinear forcing term cos(ϕ) is important to ensure that this closed orbit is
an isolated stable endpoint for the motion.
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Figure 7.5: Although the θ− ω projection of the system shows crossings, which would seem
to violate the uniqueness theorem, plotting the 3 variables we see that no crossing occurs,
and uniqueness is perserved. In the projection plot we also clearly see the system evolving
to a closed orbit.

An attractor that is a closed orbit rather than a single point is called a limit cycle.

7.1.4 Picturing Trajectories in Phase Space

2-dim projections

To solve the full nonlinear damped forced oscillator, described by the solution to Eq. (7.9),
we use a computer. Note that we can examine chaos and sensitivity to initial conditions on
a computer since the various phenomena, including the exponential growth of differences
do to chosen initial conditions, occur much before the differences due to truncation errors
associated with machine precision take over. In order to give a taste of what chaos looks
like, we will first simply examine some of the results especially as applied to the nonlinear
oscillator.

One way to see chaos is to do a projection of trajectories in the full n-dimensional space
of variables to a lower dimension (usually down to 2 dimensions so we can plot results in a
plane). For the nonlinear oscillator, this is typically the θ–ω plane where we project away
ϕ (as in the right most images of Fig. 7.5). For chaotic motion this projection yields a two
dimensional picture which in general gets quite messy, with the trajectory filling out a large
area of the plane.

Poincaré Section (Poincaré Map)

To simplify things further we can can use a Poincaré section (also called a Poincaré map).
Here we sample the trajectory periodically in ϕ say when ϕ = 2πn which is the periodicity
of cosϕ for our example, and plot only these values (θn, ωn) in the θ–ω plane. The results we
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track are then much like what we would observe by looking at the system with a stroboscope.
For creating the Poincaré section of any such system, we wait until the transients die out.

For the nonlinear oscillator, this might be at ϕ = 2πn for integer n, yielding a sampling
frequency of exactly ωD, so the map is a plot of only these values (θn, ωn). For example, we
could take ωD = 2 and q = 2 while varying a as in Fig. 7.6; where we have waited for 30

3

cycles to ensure that the transients have died out.

In figure Fig. 7.6 we show both 2-dimensional phase portraits and Poincaré maps for
various values of a. As a increases the plots show singly periodic long term behavior (a = 0.9),
to doubly periodic (a = 1.07), to chaotic (a = 1.19), and finally to periodic again occurring
amidst neighboring chaos (a = 1.35).
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Figure 7.6: Phase portraits and Poincar/’e sections for the nonlinear driven damped oscil-
lator with ωD = 2/3, q = 2, and various values of a. The plots show singly periodic, doubly
periodic, chaotic, and singly periodic behavior respectively. (Plots generated with the Math-
ematica demonstration package, Chaotic Motion of a Damped Driven Pendulum, by Nasser
Abbasi.)
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Bifurcation Map

Yet another way is through a bifurcation diagram, which takes the Poincaré map results
but plots one of the variables against one of the parameters of the system. This plot allows us
to see the transitions between different behaviors, in particular a change in the fixed points
of the system. For the nonlinear oscillator, this could be a plot of ω against a, as shown in
Fig. 7.7.
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˙Figure 7.7: For the Driven damped nonlinear oscillator, plot of ω = θ values obtained from
the Poincaré map as a function of a with Q = 2 and ωD = 2/3 fixed. This bifurcation plot
show the qualitative transitions of the system, such as where period doubling/bifurcation oc-
curs, and where chaos starts. (Plot generated with the Mathematica demonstration package,
Chaotic Motion of a Damped Driven Pendulum, by Nasser Abbasi.)

There are a few notable features in this bifurcation plot which we summarize in the following
table:

a Features

1.0 only a single ω
1.07 two values of ω from the same initial conditions (period doubling)

1.15-1.28 mostly chaos (some periodic windows)
1.35 periodic again

Other parameter choices also lead to qualitatively similar bifurcation plots, with quantita-
tively different windows of periodic behavior and chaos. We can also obtain bifurcation plots
which exhibit both periodic and chaotic windows by plotting ω against other parameters of
the system, such as ωD.
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7.2 Bifurcations

In our analysis of the nonlinear damped forced oscillator, we tooks snapshots (θn, ωn) at
ϕ = 2πn for integer n to form the Poincaré map. When we changed the driving amplitude a,
there were qualitative changes to the (θ, ω) projected trajectories (which are also generally
called phase portraits) captured by the Poincaré map results. In particular, we observed
period doubling at certain values of a; period doubling is a particular example of a bifurcation
(Fig.(7.7)).

A simple example of an abrupt change is when the existence/type of fixed points changes
with the system’s parameters (or limit cycles, attractors, or so on) abruptly changes. These
changes are generally known as bifurcations. Since bifurcations already occur in 1-dimensional
systems, so we will start by studying these systems. We will later on find out that many
examples of bifurcations in higher-dimensions are simple generalizations of the 1D case.

For a 1-dimensional system we study the equation:

ẋ = f(x) (7.17)

Trajectories in 1 dimension are pretty simple, we either have flow to a finite fixed point
x→ x∗ or a divergence to x→ ±∞.

Example: The system ẋ = x2 − 1, pictured in Fig. 7.8, has a stable fixed point at x? = −1
and an unstable fixed point at x? = 1. For one dimension the motion is simple enough
that we can determine whether fixed points are stable or unstable simply from this picture.
Imagine a particle moving on the x-axis. For x < −1 the red curve of x2 − 1 is above the
x-axis, so ẋ > 0 and the particle moves to the right, as indicated by the blue arrow. For
−1 < x < 1 the red curve is below, ẋ < 0, and the particle moves to the left. For x > 1
the curve is again above, ẋ > 0 and the particle moves to the right. The left point is stable
since the particle always moves towards it, while the right point is unstable and the particle
moves away from it.
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Figure 7.8: In this system there are two fixed points, one stable (represented by a full circle)
and one unstable (represented by the empty circle)

Stability can also be determined by linearizing about a fixed point. Although this is
overkill for one variable, the general method remains applicable for analyzing situations
with more variables, so its useful to discuss it here. Using x = x? + η and expanding to
O(η), then η̇ = ẋ = x2 − 1 ≈ 2x?η, so for x? = −1, then η̇ = −2η which decays according to
η ∝ e−2t making the fixed point stable, while for x? = 1, then η̇ = 2η which grows according
to η ∝ e2t and the fixed point is unstable.

To find the stability of fixed points in multiple dimensions, we would similarly set ~x =
~x? + ~η and expand, giving a linearized system of equations after dropping O(η2) terms:

~̇η = M~η (7.18)

Here M is a n× n matrix, whose eigenvalues and eigenvectors give us the solutions near the
fixed point, of the form ~η = ~aeλt. We will come back later on to discuss higher dimensional
fixed points in much more detail.

First we will categorize several types of bifurcations in one dimension, by considering the
equation

ẋ = f(x, r) , (7.19)

where r is a parameter that we vary. The fixed points x∗ of f(x, r) are functions of r, and
drawing them in the r − x-plane gives a bifurcation diagram.

7.2.1 Saddle-Node Bifurcation

A saddle-node bifurcation is the basic mechanism by which fixed points are created and
destroyed. As we vary r two fixed points can either appear or disappear (one stable and one
unstable).
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Example: Consider the equation

ẋ = r + x2 , (7.20)

which exhibits a saddle-node bifurcation at r = 0. The two fixed points disappear as we
increase r from negative to positive values, as shown in the images below.
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Figure 7.9: Two fixed
points, one stable and one
unstable exist for r < 0
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Figure 7.10: A single semi-
stable point exists for r = 0
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Figure 7.11: No fixed points
occur for r > 0

This saddle-node bifurcation transition can be best pictured by the bifurcation diagram in
Fig. 7.12 below, where the full lines correspond to the stable fixed points and the dashed
lines the unstable ones.
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Figure 7.12: Bifurcation diagram for the
system ẋ = r + x2
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Figure 7.13: Bifurcation diagram for the
system ẋ = r − x2

For the analogous equation ẋ = r − x2 we can obtain the results by interchanging x → −x
and r → −r. This gives the bifurcation diagram shown in Fig. 7.13.
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Example: Some flow equations like

ẋ = r − x− e−x = f(x, r) (7.21)

are hard to solve analytically for the fixed points, which are given by the transcendental
equation

r − x? ?

= e−x (7.22)

Here a graphical approach suffices, where we separately plot r − x and e−x and look for
intersections of the curves to provide the position of the fixed points, as displayed in Fig. 7.14.
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Figure 7.14: Fixed points of the system correspond to the intersections of the curves e−x

and r − x for r = 1.5, r = 1.0, r = 0.5 respectively. As r is varied the position of the fixed
points varies and a Saddle-Node Bifurcation occurs.

Examining which curve is larger also determines the direction of the one-dimensional flow,
and hence the stability of the fixed points.

Here the bifurcation occurs at r = rC, when the two curves are tangential and hence only
touch once:

∂f
=

∂

∣
0 (7.23)

x x=x?,r=rC

This gives −1 = − exp(−x?) so x?(rC) =

∣∣∣
0. Plugging x? = 0 into Eq. (7.22) we find that

rC = 1.
By a simple generalization, we can argue that the quadratic examples ẋ = r ± x2 are

representative of all saddle-node bifurcations. Taylor expanding f(x, r) near the bifurcation
point and fixed point we have

∂f
ẋ = f(x, r) = f(x?, rC) + (x− x?) ∂

+
∂x

∣∣∣ f∣ (r
x?,rC

− rC)
(

+
∂r

∣∣∣ x− x?)2∣
x?,rC

∂2f

2
+

∂x2

∣
. . .

x?,rC

= a(r − rC) + b(x

∣∣
− x?)2 + . . . ,

∣
(7.24)

where we have kept the first non-trivial dependence on r and x (noting that the partial
derivatives are simply some constants a and b), and two terms have vanished due to the
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fixed point and by the tangential bifurcation conditions:

f(x?
∂f

; rC) = 0 and

∣∣∣∣ = 0 . (7.25)
∂x x=x?,r=rC

Thus ẋ = r ± x2 is the normal form of a saddle-node bifurcation. This can be determined
explicitly from Eq. (7.24) by making the change of variable r′ = a(r− rC) and x′ =

√
?

|b|(x−
x ) to obtain ẋ′ = r′ ± ẋ′ 2 where the ± sign is determined by the sign of b.

7.2.2 Transcritical Bifurcation

In a transcritical bifurcation a fixed point exists for all values of the parameter, but changes
its stability as the parameter is varied.

Example: Consider the equation

ẋ = x(r − x) . (7.26)

Here there are fixed points at x? = 0 and x? = r. These fixed points change their stability
at r = 0 but never disappears as illustrated graphically in Fig. 7.15.
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Figure 7.15: Analysis of ẋ = x(r−x) for r = −1, r = 0 and r = 1 respectively. As r changes
the same type of fixed points remain, but the stability of the fixed points is swapped.

This gives us the following bifurcation diagram:
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Figure 7.16: Bifurcation diagram for the system ẋ = x(r − x) which plots the position of
the fixed points, with a full and dashed line for the stable and unstable points respectively.
Here the transcritical bifurcation at r = 0 becomes clear.

In fact, the equation “ẋ = x(r−x)” is the normal form of a transcritical bifurcation obtained
by expanding in a Taylor series near x = x? and r = rC.

Example: Lets consider an example with physical content, namely a model for the threshold
behavior of a laser. This can be modeled as:

ṅ = GnN −Kn ,
Ṅ = −GnN − fN + p . (7.27)

where the variables are N the number of excited atoms and n the number of laser photons.
The constant parameters include, f for the term governing the spontaneous emission decay
rate, G for the stimulated emission gain coefficient, K as the photon loss rate, and p as the
pump strength. Since there are two equations this is in general a two dimensional system
(which we will discuss how to analyze shortly). Here to make the equation one dimensional

˙we will assume rapid relaxation so that N ≈ 0, this allows us to solve for N(t) from the
second equation in Eq. (7.27) to give

p
N(t) = . (7.28)

Gn(t) + f

Plugging this back into the first equation in Eq. (7.27) then gives

n
ṅ = pG

Gn+ f

[
−K(Gn+ f)

]
≈ n(r − x) +O(n3) (7.29)
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Expanding this result near n = 0 we find

ṅ = n(r − bn) +O(n3) (7.30)

where the constant coefficients are

pG
r ≡ G2p

K
f
− , b ≡ . (7.31)

f 2

Only n > 0 makes sense, so the critical parameter value is when r = 0, or when the pump
strength p = Kf . For larger values of p this lamp turns into a laser, with a fixed point at a

G

non-zero n = r as illustrated in Figs. 7.17 and 7.18. The fixed point for p > Kf indicates
G

the coherent laser action.
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Figure 7.17: When p < Kf/G, the only
stable point is when there are no photons.
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Figure 7.18: When p > Kf/G, the stable
point of the system is with a non-zero num-
ber of laser photons.

7.2.3 Supercritical Pitchfork Bifurcation

A supercritical pitchfork bifurcation is a type of bifurcation common in problems with sym-
metries such that fixed points appear or disappear in pairs. In particular, as the parameter
is varied, one fixed point is always present but changes from being stable to being unstable
at the same place where two stable fixed points appear.

Example: The normal form for this type of bifurcation is

ẋ = rx− x3 . (7.32)

This equation is invariant under x ↔ −x, so the fixed point x? = 0 is always present. On
the other hand, the fixed points at x? =

√
± r only appear when r crosses from negative to

positive values. The different cases that occur as we change r are plotted in Fig. 7.19.
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Figure 7.19: Plots of ẋ = rx − x3 for r = −2, 0,+2 respectively. When r becomes positive
the fixed point at x = 0 looses its stability, and two new stable fixed points appear in the
system.

This gives rise to the following bifurcation diagram:
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Figure 7.20: Diagram for the supercritical pitchfork bifurcation. The stability of the fixed
point at x = 0 changes while two new stable points appear.

7.2.4 Subcritical pitchfork bifurcation

A subcritical pitchfork bifurcation essentially the opposite of a supercritical pitchfork bifur-
cation in that if the parameter is varied, one fixed point that is always present changes from
unstable to stable, while two unstable fixed points appear.

Example As an example consider the normal form

ẋ = rx+ x3 , (7.33)
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which again has a x→ −x symmetry. Here the cubic term is destabilizing, so this exhibits
a subcritical pitchfork bifurcation as depicted in Fig. 7.21.
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Figure 7.21: Bifurcation Diagram for the Subcritical Bifurcation ẋ = rx+ x3. Here there is
a change in the√stability of the fixed point at x = 0 and the appearance of two new fixed
points at x = ± −r as r becomes negative.

It is interesting to consider what happens if we add a higher order stabilizing term, such as
in the equation

ẋ = rx+ x3 − x5 . (7.34)

This equation supports five real solutions for a finite range of r values. This system supports
hysterisis as we increase and decrease r as illustrated in Fig. 7.22. We can imagine a path
where we start with a particle at x = 0 and r = −0.2 and then slowly increase r. When we
get to r = 0 the x = 0 fixed point becomes unstable and a small perturbation will push the
particle to another branch, such as that at x > 0. Increasing r further the particle travels
up this branch. If we then start to decrease r, the particle will travel back down this same
branch, and continue on it even below r = 0, and thus not following the same path. Then
suddenly at the critical rC < 0 where there is a saddle-node bifurcation, the particle will
again loose its stability and will jump back down to x = 0, after which the process can be
repeated.
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Figure 7.22: Bifurcation Diagram of the system ẋ = rx + x3 − x5. The arrows show the
motion of the sytem as we increase and decrease r; it undergoes hysterisis.

Example: Lets consider a bead on a rotating hoop with friction, described by the equation
of motion:

¨ ˙maθ + bθ = m sin θ (aω2 cos θ − g) . (7.35)

Here θ is the angle of the bead of mass m from the bottom of the hoop, a is the radius of the
hoop, ω is the constant angular velocity for the rotation of the hoop (about an axis through
the center of the hoop and two points on the hoop), and g is the coefficient of gravity. Once
again to turn this into a one-dimensional problem we consider the overdamped solution.

¨Overdamping means we can take maθ → 0. The fixed points are then θ? = 0 which changes
from being stable (when aω2 < g) to being unstable (when aω2 > g), while θ? = π is always
present and unstable. Additionally, the stable fixed points θ? = ± arccos

(
g app
aω2 ear when

aω2 > g. This corresponds to a supercritical pitchfork bifurcation. The system’s

)
bifurcation

diagram is shown in Fig. 7.23.
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Figure 7.23: When ω2 > g/a the bottom of the loop becomes and unstable fixed point and
two new stable fixed points arise that move away from the bottom as the rotation speed is
increased.

Example: As another example, consider an overdamped pendulum driven by a constant
torque described by:

θ̇ = τ − b sin(θ) , (7.36)

where τ > 0, b > 0, and θ ∈ [−π, π]. For b > τ , the gravity beats the torque and there is
one stable and one unstable fixed points as shown in Fig. 7.24. For b < τ , there are no fixed
points as shown in Fig. 7.25, and here the torque wins resulting in a rotating solution. Even
when b < τ , there is a remnant of the influence of the fixed point in the slowing down of the
pendulum as it goes through the “bottleneck” to overcome gravity. Combined this is thus a
saddle-node bifurcation at τ = b as shown in Fig. 7.26.
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θ

θ̇

˙Figure 7.24: θ as a function
of θ when τ < b. Gravity
dominates torque and there
is a stable fixed point.

θ

θ̇
˙Figure 7.25: θ as a function

of θ when τ > b. Torque
dominates gravity so there
are no fixed points.
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Figure 7.26: Bifurcation
plot of the system as a func-
tion of the applied torque
(τ/b).

7.3 Fixed Points in Two-Dimensional Systems

7.3.1 Motion Near a Fixed Point

General Categorization

In 2-dimensions, to analyze the trajectories near a fixed point ~x? = (x?, y?), we can
again linearize the equations of the system. Therefore, we’ll start by analyzing a general
2-dimensional linear system with ~x? = 0. This can be written as

ẋ = ax+ by ,

ẏ = cx+ dy , (7.37)

or
a b

~̇x = M~x where M =

[
c d

]
(7.38)

and the matrix of coefficients here has no restrictions.

Example: Let us consider a system of equations that consists of two independent 1-
dimensional flows,

ẋ = ax , ẏ = −y . (7.39)

We have the two independent solutions:

x(t) = x0e
at and y(t) = y0e

−t (7.40)

The parameter regions a < −1, a = −1, and −1 < a < 0 all produce a stable and
attracting fixed point ~x? = 0 in qualitatively different ways, because the decay rate of x(t) is
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either larger, equal, or smaller than that of y(t). This is shown in Figs. 7.27, 7.28, and 7.29.
If a = 0, then ~x? = 0 is no longer isolated as there is a line of fixed points at y = 0 and for
all values of x, see Fig. 7.30. If a > 0, then ~x? = 0 is a saddle point (with the y-axis being
the “stable manifold” and the x-axis being the “unstable manifold”), see Fig. 7.31.

Figure 7.27: Stable Node
a < −1

Figure 7.28: Stable Node
a = −1

Figure 7.29: Stable Node
−1 < a < 0

Figure 7.30: Non-isolated
fixed points a = 0

Figure 7.31: Saddle Point
a > 0

In general in two dimensions there are more possibilities for the motion than in one-
dimension and we should be more careful about our definition for when a fixed point is
stable. For a fixed point ~x? we will say that

• it is attracting if all trajectories starting in its neighborhood approach it as t→∞,

• it is Lyapunov stable if all trajectories starting in its neighborhood remain in that
neighborhood for all time,

• it is stable if it is both attracting and Lyapunov stable.
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Picking one fixed point from Fig. 7.30, most trajectories will be Lyapunov stable but not
attracting. If a fixed point allows a trajectory to wander away but eventually return, then
it may also be attracting but not Lyapunov stable.

In the general case defined in Eq.(7.38), we need to solve the eigenvalue problem for the
linear system, and thus find the eigenvalues and eigenvectors of M . Here we have

~̇a = M~a = λ~a ⇒ ~a(t) = a~0e
λt (7.41)

Therefore, as usual, we set det(M − λ1) = 0 where 1 is the identity matrix of the same
dimension as M . From this, defining

∆ ≡ det(M) = ac− bd , τ ≡ tr(M) = a+ d, (7.42)

then the eigenvalues are given by

τ
√

λ =
±

±
τ 2 − 4∆

. (7.43)
2

The corresponding eigenvectors are then ~a , and for a generic M they will not be orthogonal.±
Assuming that two different eigenvectors exist a general solution is by linearity given by

~x(t) = Re
[
C+~a+e

λ+t + C ~a eλ−t− −
]

(7.44)

assuming for the moment that λ+ 6= λ and taking the real part at the end if needed. There−
are three main cases to consider.

1. Real eigenvalues λ+, λ− ∈ R with λ+ 6= λ . This is like the system in Eq.(7.40), but−
with the x and y axes replaced by the directions defined by ~a+ and ~a .−

Example: Consider for example a solution where ~a+ = (1, 1) and ~a = (1,− −4),
ignoring normalization. If λ < 0 < λ− +, then growth occurs along ~a+ and decay
occurs along ~a , so ~x? = 0 is a saddle point, as drawn in Fig. 7.32−

If instead λ < λ+ < 0, then decay occurs slower with λ− + so it occurs first onto ~a+,
making ~x? = 0 a stable node, as drawn in Fig. 7.33
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Figure 7.32: Saddle Point with ~a+ =
(1, 1) and ~a = (1,− −4)

Figure 7.33: Stable Node with ~a+ = (1, 1)
and ~a = (1,− −4)

2. Let us now consider when λ+ = λ = λ− ∈ R. In this situation there can either be two
independent eigenvectors or only one. Two independent eigenvectors can only occur if

M = λ1, (7.45)

in which case the fixed point is called a star, and is shown in Fig. 7.34.

If instead there is only one independent eigenvector, then the fixed point is called a
degenerate node. An example of this is

[
λ b

M =
0 λ

]
,

where the eigenvalue is λ and which has ~a = (1, 0) as its only independent eigenvector.
Here the phase space portrait is as given in Fig. 7.35, where the trajectory decays first
onto the eigenvalue direction and then down onto the fixed point.
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Figure 7.34: Unstable star with λ > 0.
Figure 7.35: Degenerate Node with λ = −1
and b = 2.

3. The final case to consider is when the eigenvalues have complex parts, λ = α iω± ±
for ω 6= 0. If α < 0, the fixed point is a stable spiral where the trajectories spiral into
it, as in Fig. 7.36. If α = 0, the fixed point is a center, with neighboring trajectories
being closed orbits around it, as in Fig. 7.37. If α > 0, the fixed point is an unstable
spiral where trajectories spiral out from it, as in Fig. 7.38.

Figure 7.36: Stable spiral
with α > 0

Figure 7.37: Trajectories
about a center fixed point

Figure 7.38: Unstable Spi-
ral with α < 0

As a summary if ∆ < 0 then the fixed points are saddle points, while if ∆ = 0 then the
fixed points are not isolated but form a continuous line of fixed points. If ∆ > 0, then there
are a number of possibilities:

• τ < −2
√

∆ produces stable nodes;

• τ > 2
√

∆ produces unstable nodes;
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• −2
√

∆ < τ < 0 produces stable spirals;

• τ = 0 produces centers;

• 0 < τ < 2
√

∆ produces unstable spirals;

• τ = ±2
√

∆ produces stars or degenerate nodes.

Note that all unstable fixed points have τ > 0, while all stable fixed points have τ < 0; this
is true even for stars and degenerate nodes. This information can be summarized by the
following diagram:
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Figure 7.39: Diagram determining the type of fixed point given the determinant ∆ and trace
τ of the linearized system.

This linearized analysis yields the correct classification for saddle points, stable/unstable
nodes, and stable/unstable spirals, but not necessarily for the borderline cases that occur
on a line rather than in an area of the ∆–τ plane (centers, stars, degenerate nodes, or non-
isolated fixed points). Nonlinear terms can tip a borderline case to a nearby case in the ∆–τ
plane. This implies nonlinear terms may only affect the stability of centers.

Analysis of a General 2-Dimensional System

Consider a general 2-dimensional system:

˙ ~~x = f(~x) =
(
fx(x, y), fy(x, y)

)
, (7.46)
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which may have several fixed points (x?, y?). We can analyze their types by linearizing about
each one, defining u = x− x? and v = y − y? and expanding about (u, v) = (0, 0). Defining
~u = (u, v), then this expansion yields

∂f˙ i
~u = M~u where Mij = (7.47)

∂xj

∣∣
~x=~x?

~This is the same as a Taylor series about ~x = ~x?, where f(~x

∣∣
?) = 0.

Example: Lets consider a population growth model where rabbits (x) compete with sheep
(y). With one species, the model might look like ẋ = x(1 − x), where for small x there
is population growth, but above x > 1 food resources become scarce and the population
shrinks. For two species there can be coupling between the equations, so we could consider

ẋ = x(3− x− 2y) ,

ẏ = y(2− y − x) . (7.48)

which is called the Lotka-Volterra model. Here the parameters have been chosen to model
the fact that rabbits produce faster (3 > 2 in the linear terms) and sheep compete better
for resources (2 > 1 in the quadratic cross terms). To determine how solutions to these
equations behave we can analyze the structure of the fixed points.

The fixed points for this system are:

~x ∈ {(0, 0), (0, 2), (3, 0), (1, 1)} (7.49)

For each one we carry out a linear analysis:

• ~x? = (0, 0) simply gives ẋ = 3x and ẏ = 2y, so it is an unstable node.

• ~x? = (0, 2). Here we define u = x and v = y − 2 and the linear equations become
u̇ = −u and v̇ = −2u − 2v. Taking the trace and determinant we find τ = −3 and
∆ = 2 giving λ+ = −1 and λ =− −2. This is a stable node.

• ~x? = (2, 0) gives λ+ = −1 and λ =− −3, making it too a stable node.

• ~x? = (1, 1) gives λ =± −1
√

± 2, making it a saddle point.

From knowing the behavior of trajectories near these fixed points we can complete the picture
for an approximate behavior of the entire system, as shown in Fig. 7.40. A diagonal line
passing through the unstable node and saddle point divides the basins of attraction for the
fixed points where the sheep win (0, 2) or where the rabbits win (3, 0).
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Figure 7.40: Picture of the behavior of trajectories for the population growth model in
Eq. (7.48).

7.3.2 Systems with a conserved E(~x)

The mechanical systems of equations that we are most familiar with are those where the
energy is constant along trajectories. We will generalize this slightly and say systems with

˙any function E = E(~x) that is conserved (so E = 0) are conservative systems with E. To
rule out taking a trivial constant value of E (which would work for any system), we demand

˙that E(~x) must not be constant on any closed region in the space of ~x. Note that E = 0 is

generally not equivalent to ∇ · ~f = 0, and hence we do not simply call these conservative
systems.

Several results follow from considering conservative systems with an E:

• Conservative systems with E do not have at-
tracting fixed points. We can prove this by con-
tradiction, by imagining that such a point did
exist. Since all the points in the basin of attrac-
tion of that point must go to this single fixed
point, they must all share the same value of E,
which contradicts E not being constant within
a closed region.
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• From our experience in expanding about the minima of potentials, we also expect to
find stable centers for conservative systems with E. This result is achieved by the
following theorem which we have essentially proven in our analysis in the chapter on
vibrations:

˙ ~For ~x = f(~x), where ∂fi is continuous for all i, j, if E = E(~x) is conserved with an
∂xj

isolated fixed point ~x? at the minimum of E, then all trajectories sufficiently close are
centers.

• ~In 2 dimensions the ∇ · f = 0 definition of conservative is equivalent to having a
conserved E = E(~x) along the systems trajectories.

˙ ~Knowing that ~x = f(~x) and ∇ · ~f = 0, then let us define:

H(~x) =

∫ y x

fx(x, y
′) dy′ −

∫
fy(x

′, y) dx′ (7.50)

∂H⇒
x

= fx(x, y)
∂y

−
∫

∂fy(x
′, y) x

dx′ = fx +
∂y

∫
∂fx(x

′, y)
dx′

∂x′

∂H⇒
y

=
∂x

−fy(x, y) +

∫
∂fx(x, y

′) y

dy′ =
∂x

−fy −
∫

∂fy(x, y
′)
dy′

∂y′

Then ∂H f
∂y
∈ { x, 2fx} and ∂H ∈ {−fy,−2fy}. The first case of each occurs if fx = fx(y)

∂x

and fy = fy(x), respectively. Thus ẋ = µ∂H and ẏ =
∂y

−µ∂H for µ ,
x

∈ {1 2
∂

}. After a

trivial rescaling, these are the Hamilton equations for a conserved Hamiltonian H(~x)
(independent of t) which serves here as our function E(~x). Additionally, from the
relations the critical points ~x? of H where ∇H|~x=~x? = 0 are identical to the fixed

~points where f(~x?) = 0.

Example: Consider the one-dimensional classical mechanics motion given by:

ẍ = ax− x2 ≡ −U ′(x) (7.51)

with a > 0. We first turn this into one-dimensional form by writing

ẋ = y = fx , ẏ = ax− x2 = fy .⇒ (7.52)

~Since here fx is independent of x, and fy is independent of y, we obviously have ∇ · f = 0.
We can define a conserved scalar quantity from fx and fy using Eq. (7.50) to give

y2

H =
ax2

2
− x3

+
2

= K(y) + U(x) (7.53)
3

where we have Hamilton’s equations

∂H
ẋ =

∂K
=

∂y

∂H
and ẏ =

∂y
− ∂U

=
∂x

− . (7.54)
∂x
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For this system the fixed points occur at ~x? = (0, 0) and (a, 0), which are also the extremal
points of H. For ~x? = (0, 0) we have

∂2H ∂2H
=

∂a2
−a < 0 ,

∂2H
= 1 > 0 , and

∂y2
= 0 , (7.55)

∂x∂y

so the fixed point is a saddle point. For ~x? = (a, 0) we have

∂2H ∂2H
= a > 0 ,

∂x2

∂2H
= 1 > 0 , and

∂y2
= 0 , (7.56)

∂x∂y

so the fixed point is a center. These fixed points and some representative trajectories are
illustrated in Fig. 7.41. Here the bound trajectories have H < 0, while the unbound trajec-
tories have H > 0. The dividing case with energy H = 0 is the trajectory is that would stop
at the saddle point (0, 0).
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Figure 7.41: Phase space picture of the system ẍ = ax− x2 with a = 2.

7.4 Limit Cycles and Bifurcations

In two dimensions, we can have a new type of 2-dimensional attractor called a limit cycle,
which is an isolated closed trajectory. For stable limit cycles trajectories nearby converge to
it as in Fig. 7.42, while for unstable limit cycles the nearby trajectories diverge from it as in
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Fig. 7.43. We could also imagine a semi-stable limit cycles, where the trajectories converge
or diverge on opposite sides of the cycle (an example is shown in Fig. 7.44).

Figure 7.42: Stable Limit
Cycle

Figure 7.43: Unstable limit
Cycle

Figure 7.44: Semi-stable
Limit Cycle

Note that a limit cycle is not like a center trajectory about a fixed point, because a limit
cycle is isolated from other closed trajectories, whereas around centers nearby tranjectories
are also closed.

Example: Lets consider a system of equations written with polar coordinates, x = r cos(θ)
and y = r sin(θ) so that

ṙ = r(1− r2 ˙) , θ = 1 , (7.57)

with r ≥ 0. Here the circle r? = 1 corresponds to a stable limit cycle, as in Fig. 7.42. Since
only the radial coordinate matters for the stability of the limit cycle we can picture this in
one dimension, as in Fig. 7.45.
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Figure 7.45: Behavior of the radial component of the system. The stable point is at r = 1,
meaning the system has a stable limit cycle of radius r = 1.
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Example: Lets consider the van der Pol oscillator (first studied in 1927 in electric circuits
and found to exhibit chaotic “noise” when driven)

ẋ = ω
ẍ+ µ(x2 − 1)ẋ+ x = 0⇒

{
(7.58)

ω̇ = µ(1− x2)ω − x

If x2 > 1 then the term involving µ gives (nonlinear) positive damping, while if x2 < 1 then
the term involving µ gives (nonlinear) negative damping, which is growth. For different µ
values the phase portrait is depicted in the figures below.

Figure 7.46: Van Der Pol Oscillator with
µ = 0.1

Figure 7.47: Van Der Pol Oscillator with
µ = 2

There are several known methods for ruling out limit cycles, but we will instead focus on
a method for showing they exist.

7.4.1 Poincaré-Bendixson Theorem

Take a 2-dimensional system ẋ = fx(x, y) and ẏ = fy(x, y) with continuous and differentiable
~f . Let D be a closed, bounded region. Suppose there exists a trajectory C confined inside
D for all times t ≥ 0, then C either goes to a fixed point or a limit cycle as t→∞.

The proof requires the use of some topology, so we won’t study it. To understand how
we can use this theorem, let us suppose we have determined that there are no fixed points in
a closed, bounded region D ˙, and at the boundary’s surface the ~x points “inward” to trap the
trajectory in D. An example of this situation is shown in Fig.(7.48). Then due to the theorem
we must have a limit cycle in this region. Intuitively, the trajectory C wanders around D,
but it cannot self intersect and it eventually runs out of room to wander. Therefore, it must
converge to a fixed point or a limit cycle. This implies that there is no chaos in 2 dimensions.
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In 3 or more dimensions, trajectories have “more room” to wander and can do so forever,
allowing for chaos!

Figure 7.48: If at the boundary, the flow of a two-dimensional system pushes it into a region
where there are no fixed points, then the system has a stable limit cycle in that region.

Example: Lets consider whether a limit cycle exists for{
ẋ = x− y − x(x2 + 5y2)

(7.59)
ẏ = x+ y − y(x2 + y2)

Using polar coordinates

rṙ = xẋ+ yẏ ⇒ rṙ = r2(1− r2 − r2 sin2(2θ)) (7.60)

In particular, 1
√

− r2 − r2 sin2(2θ) > 0 for r < 1/√ 2, while 1− r2 − r2 sin2(2θ) < 0 for r > 1.
Since there are no fixed points for 1/ 2 < r < 1 there must be a limit cycle.

7.4.2 Fixed Point Bifurcations Revisited and Hopf Bifurcations

We can revisit bifurcations by adding a varying parameter to the discussion of fixed points
and limit cycles. In particular, we now include limit cycles popping in or out of existence in
the range of things that can occur if we change a parameter.

Saddle-node, transcritical, and pitchfork bifurcations for fixed points can still occur here.

Example: As a simple example consider a system of uncoupled equations

ẋ = µ− x2 , ẏ = −y . (7.61)

which has a saddle-node bifurcation at µ = 0, as shown in the phase portraits below.
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Figure 7.49: System with
µ = 1 with two fixed points
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Figure 7.50: System with
µ = 0 and one fixed point
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Figure 7.51: System with
µ = −1 and no fixed points

More generally, we can think about determining the fixed points by drawing the curves
ẋ = fx(x, y) = 0 and ẏ = fy(x, y) = 0 separately. Fixed points require both equalities to be
satisfied, so we look for crossings of these two curves. Varying a parameter of the system
then leads the fixed points to slide into one another, which corresponds to a 1-dimensional
motion. This is why our study of the various types of bifurcation of fixed points in one-
dimension (saddle-node, transcritical, supercritical and subcritical pitchforks) immediately
carry over to bifurcation of fixed points in higher dimensional equations.

Example: consider the system of equations

ẋ = µx+ y + sin(x) , ẏ = x− y . (7.62)

Note that these equations have a symmetry under x x and y y. This always has
~x?

→ − → −
= (0, 0) as a fixed point. Linearizing for this fixed point yields τ = µ and ∆ = −(µ+ 2).

So the fixed point is stable if µ < −2 or a saddle point if µ > −2.
Do to the symmetry we might expect a pitchfork bifurcation. If so, then near µ = −2,

there should be two more fixed points. We would need x = y, so expanding and solving we
write

x3

ẋ = (µ+ 1)x+ x− + . . . = 0 . (7.63)
6

Since we are studying points near x ' 0, but with µ ' −2 the term with x3 can be equally
imp√ortant, whereas the higher terms are subleading. This yields a solution where x? = y? =
± 6(µ+ 2) for µ > −2, implying that there is a supercritical pitchfork bifurcation. This
occurs when ∆ = λ+λ = 0, which actually means λ− + = 0 first. As we vary µ here the
eigenvalue crosses from negative to positive values and the stability changes.

Hopf Bifurcations

A Hopf bifurcation occurs when a spiral trajectory changes stability when a parameter
is varied, and this stability change is accompanied by the creation or destruction of limit
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cycles. A Hopf bifurcation is like a pitchfork bifurcation except that the limit cycle replaces
the “fork” in the pitchfork. Both supercritical and subcritical Hopf bifurcations exist in
analogy to pitchfork bifurcations. Here the transition of the eigenvalues of the linearized
system is different, with the real part of both eigenvalues switching sign simultaneously, as
pictured below:

Im λ

Re
 λ

Figure 7.52: Re(λ) < 0
which gives us a stable spi-
ral

Im λ

Re
 λ

Figure 7.53: Re(λ) = 0

Im λ

Re
 λ

Figure 7.54: Re(λ) > 0
which gives us an unstable
spiral

Example: Consider in polar coordinates the system

ṙ = µr − r3 ˙, θ = ω + br2 . (7.64)

It has a stable spiral into r? = 0 for µ < 0 and no limit cycles. For µ > 0, then r? =
√
µ

is a stable limit cycle, while the spiral from r? = 0 becomes unstable. Thus, µ = 0 is a
supercritical Hopf bifurcation.

If we look at the eigenvalues of the linearized system at r = 0 by setting x = r cos(θ)
and y = r sin(θ), then ẋ ≈ µx − ωy and ẏ ≈ ωx + µy, so λ = µ ± iω which indeed hits±
Re(λ) = 0 when µ = 0 as expected. The flows for this Hopf bifurcation are depicted below.
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Figure 7.55: System for µ = −0.5, b = 2
and ω = 1

Figure 7.56: System for µ = 1, b = 2 and
ω = 1

Example: Consider the following system of equations in polar coordinates:

˙ṙ = µr + r3 − r5 , θ = ω + br2 , (7.65)

which has a subcritical Hopf bifurcation at µ = 0.

Figure 7.57: System for µ = −0.2, b =
2 and ω = 1. One of the inner orbits
converges to the center while the other
converges to the outer limit cycle, there is
an unstable limit cycle between the two.

Figure 7.58: System for µ = 1, b = 2 and
ω = 1. There is no longer an unstable
limit cycle in the inner region of the phase
space.

Example: As a physics example with a limit cycle, lets consider a damped pendulum driven
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by a constant torque whose equation of motion is

1
θ̈ +

˙

θ̇ + sin(θ) = τ
q

⇒

θ = ω 1
ω̇ = −

(7.66)
ω − sin(θ) + τ
q

For τ ≤ 1, the fixed points are ω? = 0 and sin(θ?) = τ , for which there are two solutions
given by the solutions to θ? = arcsin(τ). The graphical solution for the fixed points is shown
below where we compare sin θ to the constant τ and observe where they cross. One fixed
point is stable and the other is a saddle point.2

−3 −2 −1 0 1 2 3
θ
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−0.5

0.0

0.5
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τ

Figure 7.59: Graphical determination of the θ value of the fixed points. We see that they
cannot occur if τ > 1.

What if τ > 1? It turns out that there is a unique stable limit cycle attractor. Consider

1
ω̇ = − (7.67)

q

[
ω − q(τ − sin θ)

]
For τ > 1 there are no fixed points, however for very negative ω, then ω̇ > 0 and for very
positive ω, ω̇ < 0. There is thus a trapping region where the system has no fixed points,
which by the Poincaré-Bendixson theorem implies the existence of a limit cycle. This limit

2See also our earlier analysis of the overdamped oscillator in Eq. (7.35), which used a slightly different
definition for the constants (qτ → τ and q → b).
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cycle corresponding to rotations of the pendulum over the top. The motion of two trajectories
with the same initial conditions, but with τ < 1 and τ > 1, are shown in Fig. 7.60.
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ω

Figure 7.60: Two trajectories shown from the same initial condition, one with τ < 1 (where
the trajectory converges to stable point), and one with τ > 1 (where the trajectory continues
indefinitely).

0.0 0.5 1.0 1.5 2.0 2.5
q0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

τ

stable limit cycle

stable fixed point
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Figure 7.61: Stable attractors and bifurcation transitions for a pendulum with a constant
applied torque.

In fact for q > 1 the limit cycle also exists for a range of values τc < τ < 1. Since both
the fixed points and limit cycle exist for these parameter values the endpoint of the motion
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depends on the choice of initial conditions. Here τc is a constant that depends on q, and
as q → 1 then τc → 1. For q ≤ 1 the limit cycle only exists for τ ≥ 1. The boundaries
between these regions are sketched in Fig. 7.61. For the transition between the cycle and
fixed points shown as a solid (red) line, the saddle and stable node fixed points are born on
the cycle which then disappears (called an ∞-period bifurcation). The transition across the
dashed (black) line is a saddle node bifurcation where the two fixed points are born, but the
saddle persists. Finally, for the transition across the dot-dashed (blue) line the saddle point
collides with and destabilizes the cycle, so that it seeks to exist in the region to the left (this
is called a homoclinic bifurcation). Although we have not tried to classify the full range of
possible bifurcations for systems involving a limit cycle, this example has illustrated a few
of the possibilities.

7.5 Chaos in Maps

In nonlinear systems with 2 variables, we have obtained a qualitative analytic understanding
of the motion by analyzing fixed points and limit cycles. The analysis of 2 variables includes
the possible motion for a 1-dimensional particle with two phase space variables. There is no
chaos with 2 variables. We could study chaos with 3 variables, but is there a simpler way?

Recall that chhaos in the Poincaré map of the damped driven nonlinear oscillator could
be found from {

θN+1 = f1(θN , ωN)
(7.68)

ωN+1 = f2(θN , ωN)

which are 2 discrete variables. Here we set ϕ = 2πN to be discrete with N an integer.
Uniqueness for the 3 continuous variable solution implies the existence of f1 and f2. In fact,
for general systems, we can go a step further. Chaos already exists in 1-dimensional maps
xN+1 = f(xN) for a nonlinear function f .

The example we will be using to illustrate chaos in maps is the logistic map:

xn+1 = f(xn) = rxn(1− xn) (7.69)

which has a parameter r. If we take 0 < r ≤ 4, then the {xn} are bounded by 0 ≤ x ≤ 1,
since the maximum is f(1/2) = r/4. We can visualize this solution by a plot in the xn–xn+1

plane:
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The fixed points of a general map satisfy:

x? = f(x?) (7.70)

which is slightly different from nonlinear differential equations, as these are now iterated
difference equations. For our logistic map example this givesx? = 0 for all r

x? = rx?(1− x?)⇒ x? 1
= 1−

(7.71)
for r > 1

r

The stability of a fixed point can be found by checking a small perturbation

df
xN = x? + ηN ⇒ xN+1 = x? + ηN+1 = f(x? + ηN) = f(x?) +

∣∣∣∣ ηN +O(η2) (7.72)
dx x=x?

to obtain
df

ηN+1 =

∣∣∣∣ ηN (7.73)
dx x=x?

Therefore if∣∣
• ∣ df∣ ∣∣∣∣ < 1⇒ lim ηN = 0: x? is stable.

dx x=x?
N→∞∣∣

• ∣ df∣ ∣∣∣∣ > 1⇒ lim ηN →∞: x? is unstable.
dx x=x?

N→∞∣∣
• ∣ df∣ ∣∣∣∣ = 1, then x? is marginal (requiring an expansion beyond linear analysis).

dx x=x?
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For the logistic map, Eq. (7.69) we have:

df

 df
= r − 2rx⇒

dx 
∣∣∣∣ = r x? = 0

dx x=0

df
∣∣∣∣ = 2− r x? = 1− 1

dx x=x?

(7.74)

r

The first case is stable if r < 1, and the second is stable if 1 < r < 3 and unstable otherwise,
which we show graphically in Fig. 7.62. Thus we find that0 r < 1

lim xn =
n  1→∞ 1−

. (7.75)
1 < r < 3

r

For r > 3, the limN xN is not well-defined as a single number given by a fixed point. So→∞
what happens?
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r<1

1<r<3

r>3

Figure 7.62: Stability of fixed points of the Logistic Map.

To find out, consider two iterations of the map:

xn+2 = f(f(xn)) (7.76)

which makes xn+2 a 4th order polynomial of xn as shown in Fig. 7.63 on the right. Here there
are three fixed points of the double iterated map, two are stable (which we call p and q) and
one is unstable. Furthermore we find that p = f(q) and q = f(p), so the n→∞ state of the
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Logistic map is an oscillating 2-cycle as shown in Fig. 7.63 on the left. Thus the (discrete)
period has doubled and we call this a pitchfork bifurcation of the map at r = 3.
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0.0

0.2

0.4

0.6

0.8

1.0

x
n
+
1

0.0 0.2 0.4 0.6 0.8 1.0
xn

0.0

0.2

0.4

0.6

0.8

1.0

x
n
+
2

Figure 7.63: The logistic map for r > 3 has fixed points for the double iterated mapping,
which are a two-cycle for the original map.

If we analyze the stability of p and q, we find that more bifurcations occur for higher
values of r. Since

d df(p)
(f(f(x))) |x=x? =

dx

df(q)

dp
(7.77)

dq

for∣ x? = p or x? = q, this implies that p and q lose their stability simultaneously when∣∣df(p)
dp

df(q)
∣∣∣ > 1. At this point the 2-cycle bifurcates into a 4-cycle. This pattern of period

dq

doubling continues, 2 → 4 → 8 → 16 → 32 → . . ., until r = 3.5699456 . . .. Beyond that
point the map becomes chaotic. This behavior is shown in Fig. 7.64.
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Figure 7.64: Bifurcation plot for the Logistic Map, showing points that are part of the non-
transient motion as a function of r. Below r = 3 there is a single fixed point. The first two√
bifurcations occur for r = 3 and r = 1 + 6. Each new bifurcation is closer to the previous,
until we reach the chaotic regime. In the middle of the chaotic region there are non-chaotic
regions, such as the one near r = 0.384 visible as a white stripe.

This is called a period doubling road to chaos and is one common mechanism by which
chaos emerges. Indeed, this phenomena also occurs in the nonlinear damped driven oscillator.
But how do we know that it is chaos?

If chaos occurs in a map, then we should have sensitivity to initial conditions. Examine

x0 → x1 → x2 → . . .

x0 + δ0 → x1 + δ1 → x2 + δ2 → . . .

where δn is the separation between two initially neighboring trajectories after n iterations.
As such we expect limn�1 |δ λn

n| ≈ |δ0|e ; there should be exponential separation with λ > 0
for chaos to occur, where λ is called the Lyapunov exponent.

For maps we can derive a formula for λ as follows. We know that:

1
λ = lim

n→∞ n
ln

∣∣∣∣δnδ0

∣∣∣∣ = lim
n→∞

1

n
ln

∣∣∣∣fn(x0 + δ0)− fn(x0)

δ0

∣∣∣∣ (7.78)

where fn(x) = f(f(f(. . . x)))︸ ︷︷ . Assuming that δ︸ 0 is very small this implies

n times

1
λ ' lim

n→∞ n
ln

∣∣∣∣ d ∣∣
fn(x0)∣ 1∣ = lim

dx n0 →∞ n
ln

∣∣∣∣∣
n−1∏
j=0

df(xj)

dxj

∣∣∣∣∣ , (7.79)
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where the xj are the points along the map trajectory so far. This gives

1
λ = lim

n→∞

∣∑n−1 ∣
ln ∣df(xj)∣n

j=0

∣∣∣∣ (7.80)
dxj

as a formula we can use to compute the Lyapunov exponent by keeping track of this sum as
we increase n. The result is shown in Fig. 7.65. In period doubling regions λ < 0, while in
chaotic regions λ > 0. There may also be periodic windows with chaos on either side. For
the logistic map, the largest such window is the 3-cycle near r ≈ 3.83. These windows are
also clearly visible in the bifurcation diagram.
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Figure 7.65: Value of the Lyapunov Exponent as a function of r. The chaotic regimes
correspond to λ > 0. (Finite sampling leads to the discrete points.)

You may have noticed that period doubling occurs after progressively shorter intervals as
the parameter r is increased in the case of the logistic map. In fact, for a wide class of maps
(and nonlinear differential equations), this speed-up is characterized by a universal number.
For a parameter r, denoting rα as the value where the αth period doubling occurs, then

rα − rα 1
δF = lim

−
α→∞

≈ 4.669201 (7.81)
rα+1 − rα

is the Feigenbaum number. For the logistic map, it is easy to check that we are already
pretty close to this number for small α. Given this, we can estimate where chaos starts as
follows:

√
δ1 = r2 − r1 =

δn
6− 2 and δn = rn+1 − rn =

−1

δF

= . . . =
δ1

,
δn−1 (7.82)

F
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so our estimate for where chaos starts is∑∞ ∑∞
(n 1) δ− − 1

r = lim rn = 3 + δn ' 3 + δ1 δF = 3 +
n→∞

n=1 n=1
1− 1 = 3.572 (7.83)

δF

which is fairly close to the real value of r = 3.5699456.
You may be wondering how trajectories can diverge exponentially (initially) while still

remaining bounded. The mechanism is by stretching and folding of trajectories. Think of
a drop of food coloring on cookie dough which you then fold and knead. To see this more
explicitly, lets once again returning to the logistic map in Eq.(7.69), but now we take r ' 4.
Then: (

1
xn ∈ 0,

)
is sent to xn+1 ∈ (0, 1) (7.84)

2(
1

xn ∈
)

, 1 is sent to xn+1 ∈ (1, 0) (7.85)
2

so the two resulting intervals are the same however in opposite directions. Together the
original (0, 1) interval is both stretched and bent. We then repeat this, with the phase space
structure getting progressively more complicated as depicted below:

Finally, there is a self-similarity property of the bifurcation diagram for the logistic map.
When we zoom in on regions of smaller scales of r, we see the same picture again, including
the periodic windows, chaotic regions, and period doubling. This is a property of fractals
that we’ll see shortly.
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7.6 Chaos in Differential Equations, Strange Attrac-

tors, and Fractals

7.6.1 The Lorenz Equations

The prototypical example of chaos in differential equations consists of the Lorenz equationsẋ = σ(y − x)

ẏ = rx− y − xz (7.86)
ż = −bz + xy

where the 3 parameters σ, r, and b are all positive. Note the symmetry under x → −x
and y → −y. Lorenz discovered chaotic behavior in his study of atmospheric modeling,
which he showed also appeared in these simpler three equations. This serves as a simplified
model of a fluid in a convection roll, with x being the average velocity in the loop, y being
the temperature difference between the flow on the two halves of the roll, and z being
the temperature difference between the inside and outside of the roll. One can think of
these equations as an approximation arising from the full Navier-Stokes and heat transfer
equations.

The fixed points are√x? = y? = z? = 0 which is stable for r < 1 or a saddle point for
r > 1, and x? = y? = ± b(r − 1) and z? = r − 1 which only exist for r > 1. At r = 1 their
is a supercritical pitchfork bifurcation of the fixed point. With some work, we can show that
the r > 1 stable fixed points only remain stable up to r = rH, and are unstable beyond that.
At this point r = rH the stable fixed point prongs each become unstable under subcritical
Hopf bifurcations, which involve a collision with an unstable limit cycle that shrinks onto
each of the fixed points. This is shown in Fig. 7.66.

Figure 7.66: Bifucation Diagram of the x coordinate of the Lorentz system
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~We also know that in this system the phase space volumes contract∇·f = −(σ+b+1) < 0
(so the system is dissipative). It can also be shown that trajectories are (eventually) bounded
by a sphere x2 + y2 + (z − r − σ)2 = constant.

In the Lorenz system, for r < rH the trajectories converge on a stable fixed point. What
happens for r > rH? The trajectories are bounded and the phase space volume shrinks, but
there are no stable fixed points or stable limit cycles to serve as attractors. Instead, we have
chaos with a strange attractor, which is depicted in Fig. 7.67.
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Figure 7.67: Strange attractor in the chaotic regime of the Lorenz equations, shown in the
3-dimensional space as well as for the x–z projection.

In a strange attractor, the trajectories still never cross (in the 3 dimensions), and the
attractor trajectory exhibits∫exponential sensitivity to initial conditions. It also has zero

˙ ~volume consistent with V = ∇ · f dV , but interestingly, it has infinite surface area! There
are infinitely many surfaces traced out by cycles near the fixed points, so the attractor is a
fractal. For the Lorenz system, surfaces are different after each pass from x > 0 to x < 0
and vice versa; this attractor is a fractal with dimension 2 < D < 3. In fact D ' 2.05 in
this case.

How can we have exponential divergence of trajectories while the phase space volume
shrinks? For the Lorenz system, we have 3 variables, so there are 3 directions in which
trajectories can converge or diverge. (In general, these directions are more complicated than
simply fixed Cartesian axes. We must find the principal axes at each time.) Thus there are
in principal 3 exponents governing the trajectories:

δ = δ eλjt for j ∈ {1, 2, 3} ⇒ V (t) ≈ V e(λ1+λ2+λ3)t
j j0 0 (7.87)
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~For a case where ∇ · f is constant this means that:∫
˙ ~ ~V = (λ1 + λ2 + λ3)V (t) = ∇ · f dV = ∇ · f V (t) < 0 . (7.88)

Note that ∇ · ~f = −(σ + b + 1) is constant for the Lorenz system. This means λ1 + λ2 +

λ3 = ∇ · ~f < 0, and the system is dissipative if the sum of the exponents is negative,
indicating that the volume shrinks overall. But exponential sensitivity to initial conditions
only requires λj > 0 for at least one value of j. Here, the Lyapunov exponent is defined as
λ ≡ max(λ1, λ2, λ3).

~For the nonlinear damped driven oscillator, we also have λ1 + λ2 + λ3 = ∇ · f = −1 < 0.
q

Here, things are even simpler because ϕ = ωDt has λ3 = 0, so λ1 + λ2 = −1 . For the
q

undamped case (q → ∞), we can still have chaos with λ1 = −λ2 > 0. Thus we note that
chaos can occur in both conservative and dissipative systems.

We can think of an area in phase space as it gets stretched and contracted as pictured
below. Here it is stretched by the exponent λ1 > 0 and contracted by λ2 < 0. If trajectories
are bounded then it must also get folded.

Figure 7.68: The action of the system leads to stretching and rotation of phase space volume.

7.6.2 Fractals and the Connection to Lyapunov Exponents

Fractals are characterized by a nontrivial structure at arbitrarily small length scales. In
particular, they are self-similar (in that they contain copies of themselves at arbitrarily
small scales).

Example: The Cantor set fractal is created by iteratively removing the middle 1 of a line
3

segment. If S0 is the line segment 0 ≤ x ≤ 1, then S1 is formed by removing the middle 1
3

of S0, S2 is formed by removing the middle 1 of each piece of S1, and so on until the true
3

Cantor set emerges as S . This is pictured in Fig. 7.69. Here the number of separate pieces∞
grows infinitely large (and is in fact non-denumerable), while the total length of the pieces
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tends to zero. (This is the one dimensional analog of area → ∞ with volume → 0 for the
Lorentz equations strange attractor.) The Cantor set also has the self-similar property.

Figure 7.69: Illustration of the iterative procedure that produces the Cantor Set.

How do we define a non-integer dimension for fractals? Let us consider covering a line of
length a0 with segments of length a. We would need N(a) = a0 segments. For a square of side

a (
length a0 covered by smaller squares of side length a, we would need N(a) = a0

)2
squares.

a

In general, for a D-dimensional hypercube of side( length a0 covered by D-dimensional hy-

percubes of side length a, we would need N(a) = a0
)D

such hypercubes for integer D. This
a

can be generalized beyond integers to

ln(N(a))
dF = lim

a→0
(

ln a0
) (7.89)

a

which is the Hausdorff dimension (also called the capacity dimension or the fractal dimen-
sion).

Example: in the Cantor set, after n steps, the number of segments is:

N(a) = 2n (7.90)

while the length of each segment goes as:

a0
an = (7.91)

3n

Thus the fractal dimension is given by:

ln(2n)
dF = lim

n→∞
ln(2)

=
ln(3n)

' 0.6309 (7.92)
ln(3)

indicating that it is less than a line with dF = 1 but more than a point with dF = 0.
In general, fractal dimensions are not integers and are usually irrational.

Example: The Koch curve is like the Cantor set, except that instead of deleting the middle
1 of every segment, we replace it by an equilateral triangle on the other two sides, so segments
3

are overall added rather than removed. The Koch curve corresponds to one of the sides of
the Koch Snowflake depicted below in Fig. 7.70. In this case:

0
N( ) = 4n

a
a and an =

ln(4)⇒ dF =
3n

' 1.262 (7.93)
ln(3)
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which satisfies 1 < dF < 2. This means the Koch curve has infinite length (1-dimensional
volume) but zero area (2-dimensional volume).

Figure 7.70: The Koch Curve corresponds to starting with just one of the 3 sides of the
triangle used to generate the Koch Snowflake shown here.

We can connect the notion of a fractal dimension to Lyapunov exponents which govern
the behavior of physical trajectories. For simplicity, let us consider an example with λ1 > 0,
λ2 < 0, and λ3 = 0. The area of a square of phase space points evolves as:

A(t = 0) = a2 → A (t) = a2 e(λ1+λ2)t
0 0 0 (7.94)

while the squares covering it have area A(t) = a2 2
0e

λ2t, see Fig. 7.71. Therefore

A0(t)
N(t) = = e(λ1−λ2)t (7.95)

A(t)

This gives rise to a fractal dimension of:

λ1
dF = 1 + (7.96)

|λ2|

which is the Kaplan-Yorke relation. A fixed point attractor has dF = 0, and a limit cycle
attractor has dF = 1. By contrast, a strange attractor generally has a non-integer dF, and
this dimension is related to the sensitivity to initial conditions (given by λ1) as well as to
the contraction of phase space (given by λ2).
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Figure 7.71: As the system evolves the phase space volume changes, so our tiling volume
changes as well.

7.6.3 Chaos in Fluids

Chaos can occur in fluids as well. If we take ∇ · v = 0 and ρ to be constant and uniform,
the Navier-Stokes equation says:

∂v ∇P
= −v · ∇v −

∂t
+ ν∇2v (7.97)

ρ

and this should be used in conjunction with the heat transfer equation. In the language
we have been using in this chapter, the velocity field v(x, t) corresponds to a continuum of
variables (each labeled by x). One can also think of the terms involving ∇v as couplings
between these variables, like finite differences, for example:

∂vx vx(x+ ε)− vx(x− ε)≈
∂x

(7.98)
2ε

In some cases (as in convection rolls per the Lorenz equations), we can have aperiodic
time dependence but spatial regularity in x. Here, many of the ideas that we have studied
(like, for example, the period doubling road to chaos) apply. In other cases, the spatial
structure in x also becomes irregular. The regularity (or lack thereof) can also depend
on initial conditions. This happens, for example, in fat convection rolls in shallow fluids.
Essentially there could be multiple attractors present. For the case with irregularity in x,
the dimensionality of the attractor is proportional to the size of the system, which is very
large! Here it makes more sense to speak of a “dimension density”.

Strong turbulence in a fluid falls in the category of being irregular in x with no charac-
teristic size for features. This is certainly more advanced than our examples, and indeed a
full formalism for turbulence remains to be invented. One thing we can do to characterize
strong turbulence is apply dimensional analysis.
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There are several scaling laws for turbulence in 3 dimensions. Recall that vortices (eddies)
appear at all length scales λ and are efficient at transferring energy. Let us define L as the
size of the fluid container, λ0 as the scale where dissipation is important (for Reynolds
number R ≈ 1), ε as the mean energy transfer per unit time per unit mass, and vλ as
the velocity variation at length scale λ. Note that the dimensions [ν] = m2/s and [ε] =
(kgm2/s2)(1/skg) = m2/s3. There are three scales to consider.

v3

1. At λ ≈ L, there can be no dependence on ν, so ε ∝ L . (This is the scale with the
L

most kinetic energy and the largest energy.)

v3

2. At λ λ
0 � λ� L, there can still be no ν, so here ε ∝ . Note that this is independent

λ
of the properties ρ, ν and the scale L of the fluid!

3. At λ ≈ λ0, because R = v0λ0 ≈ 1, then v0 ≈ ν
ν

. This is where the energy dissipation
λ0

occurs. Here we only have ν and λ0 present, so ε ∝ ν3

.
λ4

0

Rather than using λ and vλ, the universal result for the case λ0 � λ � L is often written
1

in terms of the wavenumber k ∝ and kinetic energy per unit mass per unit wave number,
λ

E(k). The kinetic energy per unit mass can be written as E(k) dk. Here E(k) behaves as a
rescaled version of the energy with slightly different dimensions, [E(k)] = m3/s2. Analyzing
its dimensions in relation to ε and k we note that m3/s2 = (m2/s3)2/3(1/m)−5/3 which yields

2

E(k) ∼ ε
5

3k− 3 (7.99)

This is the famous Kolmogorov scaling law for strong turbulence. It provides a mechanism
by which we can make measurements and probe a universal property of turbulence in many
systems.

The End.
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