Classical Mechanics III (8.09) Fall 2014 Assignment 5

Massachusetts Institute of Technology
Physics Department Due Tues. October 14, 2014
Mon. October 6, 2014
6:00pm

Announcements

This week we continue to study Canonical Transformations.

- Due to the Columbus day holiday I have made this assignment due on Tuesday Oct. 14 rather than on the Monday. Note however that your next assignment (\#6) will be posted on Monday Oct. 13 and due on Monday Oct. 20 as usual.

Reading Assignment

- The reading for Canonical Transformations is Goldstein Ch. 9 sections 9.1-9.7. (We will not discuss active infinitesimal canonical transformations with the same level of detail that Goldstein does in 9.6, but it is still good reading.)
- The reading on the Hamilton-Jacobi equations and Action-Angle Variables is Goldstein Ch. 10 sections 10.1-10.6, and 10.8. We will cover more examples of this material on problem set $\# 6$.

Problem Set 5

On this problem set there are 5 problems involving canonical transformations, Poisson brackets, and conserved quantities. In the last problem you will apply the Hamilton-Jacobi method to a problem for which you already know the solution.

1. Canonical Transformations [12 points]

In this problem we get some practice with canonical transformations from (q, p) to (Q, P). We will also look at generating functions $F(q, p, Q, P, t)$, following the notation in Goldstein for $F_{1}(q, Q, t), F_{2}(q, P, t), F_{3}(p, Q, t)$, and $F_{4}(p, P, t)$.
(a) [2 points] Determine two possible generating functions for $Q_{i}=q_{i}$ and $P_{i}=p_{i}$.
(b) [2 points] Find a generating function $F_{1}(q, Q, t)$ for: $Q=p / t$ and $P=-q t$.
(c) [4 points] For which parameters k, ℓ, m, n is there a generating function $F_{1}(q, Q)$ for: $Q=q^{k} p^{\ell}$ and $P=q^{m} p^{n}$?
(d) [4 points] For a particle with charge q and mass m moving in an electromagnetic field the Hamiltonian is given by

$$
\begin{equation*}
H=\frac{1}{2 m}(\vec{p}-q \vec{A})^{2}+q \phi \tag{1}
\end{equation*}
$$

where $\vec{A}=\vec{A}(\vec{x}, t)$ and $\phi=\phi(\vec{x}, t)$ are the vector and scalar potentials. Here $\left\{x_{i}, p_{j}\right\}$ are canonical coordinates and momenta.
Under a gauge transformation of the electromagnetic field:

$$
\vec{A} \rightarrow \overrightarrow{A^{\prime}}=\vec{A}+\vec{\nabla} f(\vec{x}, t), \quad \phi \rightarrow \phi^{\prime}=\phi-\frac{\partial f(\vec{x}, t)}{\partial t}
$$

while $\vec{p}-q \vec{A}$ is unchanged. Show that this is a canonical transformation for the coordinates and momenta of a charged particle, and determine a generating function $F_{2}(\vec{x}, \vec{P}, t)$ for this transformation.
2. Harmonic Oscillator [7 points] (Related to Goldstein Ch. 9 \#24)
(a) [2 points] For constant a and canonical variables $\{q, p\}$, show that the transformation

$$
Q=p+i a q, \quad P=\frac{p-i a q}{2 i a}
$$

is canonical by using the theorem that allows you to check this by using Poisson brackets.
(b) [5 points] With a suitable choice for a, obtain a new Hamiltonian for the linear harmonic oscillator problem $K=K(Q, P)$. Solve the equations of motion with K to find $Q(t), P(t)$, and then find $q(t)$ and $p(t)$.

3. Poisson Brackets and Conserved Quantities [4 points]

A system of two degrees of freedom is described by the Hamiltonian

$$
H=q_{1} p_{1}-q_{2} p_{2}+a q_{1}^{2}+b q_{2}^{2}
$$

with constants a and b. Show that $u_{1}=\left(p_{1}+a q_{1}\right) / q_{2}$ and $u_{2}=q_{1} q_{2}$ are constants of the motion.

4. Angular Momentum and the Laplace-Runge-Lenz vector [13 points]

Consider the angular momentum $\vec{L}=\vec{x} \times \vec{p}$ for canonical variables $\left\{x_{i}, p_{j}\right\}$ in 3dimensions. The components can be written as $L_{i}=\epsilon_{i j k} x_{j} p_{k}$ with an implicit sum on the repeated indices j and k. Here $\epsilon_{i j k}$ is the Levi-Civita tensor

$$
\epsilon_{i j k}= \begin{cases}+1 & \text { if } i j k=123 \text { or a cyclic combination of this } \\ -1 & \text { if } i j k=321 \text { or a cyclic combination of this } \\ 0 & \text { otherwise }\end{cases}
$$

Often $\epsilon_{i j k}$ is handy when we are considering cross-products: $\vec{c}=\vec{a} \times \vec{b}$ is equivalent to $c_{i}=\epsilon_{i j k} a_{j} b_{k}$. Some properties you may find useful are: $\epsilon_{i j k}=\epsilon_{j k i}, \epsilon_{j i k}=-\epsilon_{i j k}$, and $\sum_{k} \epsilon_{i j k} \epsilon_{l m k}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}$.
(a) $[4$ points $]$ As warm up, calculate the Poisson brackets $\left[x_{i}, L_{j}\right],\left[p_{i}, L_{j}\right],\left[L_{i}, L_{j}\right]$, and $\left[L_{i}, \vec{L}^{2}\right]$.

Now consider two particles attracted to each other by a central potential $V(r)=$ $-k / r$, where $r=|\vec{r}|$ is the distance between them. Taking the origin at the CM, the Hamiltonian for this system is $H=\vec{p}^{2} /(2 \mu)-k / r$ where μ is the reduced mass and the r_{i} and p_{j} are canonical variables. The angular momentum, $\vec{L}=\vec{r} \times \vec{p}$, is conserved so you may assume that $\left[L_{i}, H\right]=0$ (some of you may recall proving this in 8.223).
(b) [7 points] Show that the Laplace-Runge-Lenz vector, $\vec{A}=\vec{p} \times \vec{L}-\mu k \vec{r} / r$, is conserved.

Recall that the conservation of \vec{L} implies that the motion of the particles in this central force take place in a plane that is perpendicular to \vec{L}. The set of H, \vec{L}, \vec{A} gives 7 constants of motion, but for two particles there are at most 6 constants from integrating the equations of motion. Furthermore, at least one constant must refer to an initial time, and none of H, \vec{L}, \vec{A} do so. Hence there must be at least two relations between these constants. It is easy to see that $\vec{L} \cdot \vec{A}=0$ provides one relation.
(c) [2 points] Show that the other relation is $\vec{A}^{2}=\mu^{2} k^{2}+2 \mu H \vec{L}^{2}$.
[Read Goldstein section 3.9 to see how \vec{A} can be used to very easily find the orbital equation $r=r(\theta)$ for motion in the plane.]
5. An Exponential Potential [13 points]

A particle with mass $m=1 / 2$ is moving along the x-axis inside a potential $V(x)=$ $\exp (x)$, so its Hamiltonian is $H=p^{2}+e^{x}$. You may assume $p>0$.
(a) [6 points] Determine a generating function $F_{2}(x, P)$ that yields a new Hamiltonian $K=P^{2}$. (Feel free to check your results with mathematica.)
(b) [3 points] What are the transformation equations $P=P(x, p)$ and $Q=Q(x, p)$?
(c) [4 points] Determine $x(t)$ and $p(t)$.

Question [not for points]: How would your analysis change if $p<0$?
6. Projectile with Hamilton-Jacobi [11 points] (Goldstein Ch. 10 \#17)

Solve the problem of the motion of a point projectile of mass m in a vertical plane using the Hamilton-Jacobi method. Find both the equation of the trajectory and the dependence of the coordinates on time. Assume that the projectile is fired off at time $t=0$ from the origin with the velocity v_{0}, making an angle θ with the horizontal.

MIT OpenCourseWare
http://ocw.mit.edu

8.09 Classical Mechanics III

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

