Classical Mechanics III (8.09) Fall 2014 Assignment 6

Massachusetts Institute of Technology
Physics Department Due Mon. October 20, 2014
Mon. October 13, 2014
6:00pm

Announcements

This week we will continue our study of the Hamilton-Jacobi equations, and will discuss action-angle variables.

- Your midterm is Wednesday, Oct.29, 7:30-9:30pm in room 32-144. Next week when you turn this problem set in there will not be another assignment posted. Instead I will post practice problems for the midterm. The midterm will cover the course material up to and including action angle variables. (It will not include perturbation theory.)

Reading Assignment

- The reading on Hamilton-Jacobi equations is Goldstein sections 10.1-10.5. The reading on Action-Angle Variables is Goldstein 10.6 and 10.8. You should also read section 10.7 pages 457-460 (only up to Eq.10.109).
- After we finish discussing action angle variables our next subject will be Perturbation Theory, for which the reading is Goldstein chapter 12, sections 12.1-12.3.

Problem Set 6

On this problem set you will explore the use of the Hamilton-Jacobi equations and action-angle variables. All five of these problems are from Goldstein, or are related to a problem in Goldstein.

1. Charged Particle in a Plane [12 points] (Goldstein Ch. 10 \#6)

A charged particle is constrained to move in a plane under the influence of a nonelectromagnetic central force potential $V=\frac{1}{2} k r^{2}$ with $k>0$, and a constant magnetic field \vec{B} perpendicular to the plane obtained from the vector potential

$$
\begin{equation*}
\vec{A}=\frac{1}{2} \vec{B} \times \vec{r} \tag{1}
\end{equation*}
$$

(a) [6 points] Set up the Hamilton-Jacobi equation for Hamilton's characteristic function in plane polar coordinates. Separate the equation and reduce it to an integral. (b) [6 points] Solve for the motion when the canonical momentum $p_{\theta}=0$ at time $t=0$.
2. A Time Dependent H [10 points] (Goldstein Ch. 10 \#8)

Suppose the potential in a problem of one degree of freedom is linearly dependent on time, such that the Hamiltonian has the form

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}-m A t x \tag{2}
\end{equation*}
$$

where m is the mass and A is a constant. Solve this problem using Hamilton's principal function S. Take the initial conditions at $t=0$ to be $x=0$ and $p=m v_{0}$. (If you get stuck, solve the problem a different way, and in doing so obtain a hint about the appropriate form of S. Then solve in the manner requested.)
3. The $|x|$ Potential [10 points] (Goldstein Ch. 10 \#13)

A particle of mass m exhibits periodic motion in one dimension under the influence of a potential $V(x)=F|x|$ where $F>0$ is a constant. Using action-angle variables, find the period of the motion as a function of the particle's energy. Check that your result has the correct dimensions.
4. The $\csc ^{2}(x)$ Potential [18 points] (Goldstein Ch. 10 \#15)

A particle of mass m and energy E moves in one dimension subject to the potential

$$
\begin{equation*}
V(x)=a \csc ^{2}\left(\frac{x}{x_{0}}\right), \tag{3}
\end{equation*}
$$

where a and x_{0} are constants.
(a) [2 points] Obtain an integral expression for Hamilton's characteristic function.
(b) [4 points] Under what conditions can action-angle variables be used?
(c) [8 points] Assume these conditions are met, find the frequency of oscillation as a function of energy by the action-angle method. (Hint: the integrals in section 10.8 of Goldstein may be useful. Show your steps.)
(d) [4 points] Cross check your result in (c) by using the limit of small amplitude oscillations.
5. A Three Dimensional Oscillator [10 points] (related to Goldstein Ch. 10 \#20)

Consider a three dimensional harmonic oscillator of mass m with unequal spring constants k_{1}, k_{2}, k_{3} in the $(x, y, z)=(1,2,3)$ directions.
(a) [3 points] By using separation of variables and introducing action-angle variables $J_{1,2,3}$ and $\mathrm{w}_{1,2,3}$, find the frequencies of the oscillator. You may use your knowledge of the action-angle variable solution for a one dimensional oscillator.
(b) [3 points] The connection of $\left(\mathrm{w}_{i}, J_{i}\right)$ to the original $\left(x_{i}, p_{i}\right)$ variables is obtained from a straightforward generalization of the one-dimensional result:

$$
x=\left(\frac{J}{\pi \sqrt{k m}}\right)^{1 / 2} \sin (2 \pi \mathrm{w}), \quad p=\left(\frac{J \sqrt{k m}}{\pi}\right)^{1 / 2} \cos (2 \pi \mathrm{w}) .
$$

Using your knowledge that $\left(x_{i}, p_{i}\right)$ are canonical variables, verify using Poisson brackets that your action-angle variables $\left(\mathrm{w}_{i}, J_{i}\right)$ from part (a) are also canonical variables. [Aside: This also follows directly from the fact that Hamilton's characteristic function, which we use to define the angle variables, is a F_{2} type generating function.]
(c) [4 points] When the oscillator has degeneracy it is more convenient to use a different set of canonical variables w_{α} and J_{α} with $\alpha=a, b, c$. Let

$$
J_{a}=J_{1}+J_{2}+J_{3}, \quad J_{b}=J_{1}+J_{2}, \quad J_{c}=J_{1}
$$

and derive expressions for $\mathrm{w}_{a, b, c}$ as a linear combination of $\mathrm{w}_{1,2,3}$ by demanding that $\left\{\mathrm{w}_{\alpha}, J_{\alpha}\right\}$ are canonical variables. Check that if $k_{1}=k_{2}$ one of your angle variables $\mathrm{w}_{a, b, c}$ becomes conserved, and that if $k_{1}=k_{2}=k_{3}$ two of your angle variables become conserved.

MIT OpenCourseWare
http://ocw.mit.edu

8.09 Classical Mechanics III

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

