
Classical Mechanics III (8.09) Fall 2014  
Assignment 7  

Massachusetts Institute of Technology 
Physics Department Due Wed. November 12, 2014 
Mon. November 3, 2014 6:00pm 

(This assignment is due on the Wednesday because the Monday and Tuesday are student 
holidays. Assignment 8 will be posted on Mon. Nov.10 and then due on the following 
Monday as usual.) 

Announcements 

This week we will continue our study of ideal fluids (not yet adding viscosity). 

Reading Assignment 

•	 For Perturbation Theory the reading assignment was Goldstein chapter 12, sections 
12.1-12.3. 

•	 Read Goldstein section 13.1 of chapter 13, on the transition from discrete to con­
tinuous systems. 

•	 For Fluids, read sections 8.6–8.10, 8.13, and 8.14 from the Mechanics book by Symon 
(scanned and available on the 8.09 website). 
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Problem Set 7 

On this problem set there are two problems on perturbation theory and two problems 
on fluids. Feel free to use a package like mathematica or matlab to help with any integrals. 

1. Perturbation Theory for Two Springs [10 points] (see also Goldstein Ch.12 #5)

A mass is constrained to move on a straight line and is attached to the ends of two
ideal springs. Each spring has a force constant k and unstretched length b. In the
figure take the distance a > b.

(a) [3 points] What is the Hamiltonian	 H 
for this system in terms of canonical co­
ordinates θ and pθ? 

(b) [2 points] Expand your result from (a) 
about θ = 0 and identify H = H0 + 
ΔH, where you have a harmonic oscil­
lator Hamiltonian for H0. To determine 
ΔH keep only the first order corrections 
counting θ ∼ pθ (ie. θ and pθ are the 
same size for the expansion). 

(c) [5 points] Using first order perturbation theory find the secular change to the 
frequency from ΔH, and show that there is no secular change to the amplitude. 

2. Second Order Perturbation Theory [18 points] (see also Goldstein Ch.12 #4)

Consider the Hamiltonian for a simple pendulum for a mass m on a rigid rod of length
a, with angle θ to the vertical:

pθ 
2  pθ 

2 Iω2θ2  
H = − Iω2 cos θ = −Iω2 + + +ΔH = −Iω2 + H0 +ΔH , 

2I	 2I 2

where I = ma2 and ω2 = g/a. In lecture we took canonical variables (β, J) and 
considered the first order results β(1) and J (1). In this problem you will work out what 
happens at second order in perturbation theory. To simplify some of the algebra, you 
should assume that β(0) = 0 throughout. [You should feel free to use a program 
like mathematica to evaluate integrals, do series expansions, and collect algebra. Do 
write out all your intermediate results so you can be given partial credit if anything 
goes wrong.] 

(a) [2 points] Identify ΔH = ΔH1 + ΔH2 where the two terms are ∝ θ4 and ∝ θ6 

respectively. 
(b) [4 points] Using ΔH1 repeat the first order analysis in lecture, but now solve 

analytically for β(1)(t) ≡ β(0) + ν1t + β1(t) and J (1)(t) ≡ J (0) + J1(t) without 
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doing a time average. Here the β1(t) and J1(t) terms oscillate, while ν1 is a 
constant. 

There will be two types of corrections at second order in perturbation theory. One 
comes from treating ΔH1 to second order in perturbation theory. The other comes 
from treating ΔH2 as a first order perturbation. We can solve for these two corrections 

(2) (2)
independently and then add them to obtain the full solution, so let β(2) = βa + βb

(2) (2)
and J (2) = Ja + Jb where the subscripts a and b correspond to the terms found 
using ΔH1 and ΔH2 respectively. 

(2) (2)
(c) [4 points] Derive equations for β̇b and J̇b using ΔH2. Take the time average

(2) (2)˙ J̇and determine whether there are secular changes. That is find βb and b . 
(2) (2)˙ J̇(d) [8 points] Derive equations for βa and a using ΔH1. In order to determine 

whether there are additional secular changes we will perform the time average 
accounting for the secular change already found at first order. In your expres­
sions set νt+β(1)(t) = ν(1)t+β1(t) where ν(1) = ν +ν1. Then expand the RHS of 
these equations to first order in β1(t) and J1(t), and then use your results from 

(2) (2)
(b). Now determine whether there are secular changes, that is find β̇a and J̇a 

but in this part only, average with 

τ (1)1 
τ (1)

dt where τ (1) = 1/ν(1) . 
0 

To do the averages set 2πν(1)t = φ. Also you may set 2πνt = φ, since in the 
second order terms this replacement is valid up to terms beyond second order. 

˙ J̇ (2)Add your result to (c) to find final results for β(2) and . 

∫
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3. Fluid Siphon Producing a Jet [18 points]
A tube of constant area AT is used as a siphon, and it steadily draws water (taken
to be an ideal incompressible fluid) from an infinitely large reservoir as shown. The
fluid exits the siphon at (A) with a velocity ve at an angle θ to the horizontal. Here
(A) is at a height H1 below the surface of the reservoir, and the top of the siphon is
at a height H2 above this surface. A narrow water jet is produced at (A) and is a
steady flow. We denote the atmospheric pressure by pa.

(

(

e

θ

Free jet

AB

3

ap ap

ap

y

V

H

2H

1H

a) [3 points] What is the velocity ve
in terms of g and H1?

b) [3	 points] At the top of the
siphon, what is the velocity?
what is the pressure?

(c) [5 points] What is the area A of 
the jet as a function of AT , H1, 
and the height y of that portion 
of the jet? [In parts (c)–(e) ne­
glect the vertical size of the jet 
relative to y, and assume that 
l · lv = 0 inside the jet.] 

(d) [2 points] What is maximum height	 H3 of the jet in terms of the parameters 
given in the problem? 

(e) [5 points] Derive	 a formula y = y(x) describing a streamline in the jet (the 
streamline is also a pathline). Parameters may also appear in your answer. 

4. Fluid Angular Momentum and a Vortex without Vorticity [14 points]

(a) [5 points] Consider the angular momentum density l = lr × (ρlv) where lr extends 
from a fixed origin out to a fixed location (x, y, z) in the fluid. Derive a conser­
vation law for l making use of results from lecture and including gravity. Write 
your result in a similar form to what we found for linear momentum, i.e.: 

∂l 
+ l l · Ĵ = Q . 

∂t 

You should find an equation for the angular momentum flux density tensor Jij , 
as well as for the external vector source term Qi. 

Now consider a horizontal tank with a small hole in the center. An incompressible 
ideal fluid rapidly rotates around the hole in an essentially circular path, creeping 
slowly inward in a tight spiral. Everywhere but near the hole we can treat the flow 
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as steady. (Near the hole viscosity matters so for now we cut this region out of our 
considerations.) Take this steady fluid to have zero vorticity, × lv = 0. 

(b) [4 points] Using a result derived with Stoke’s theorem and a suitably chosen 
closed curve C, show that the angular velocity θ̇ ∝ 1/r2 where r is the radial 
distance from the hole. (Note that you are only allowed to draw C so that the 
region inside has steady fluid flow. If you instead draw a circle with the hole at 
its center you will quickly realize that there is vorticity in the hole region.) 

(c) [5 points] Show that for this steady incompressible fluid the result from (a) 
implies d(ẑ · l)/dt = 0. Use this to find the constant of proportionality for your 
result in (b). 

~∇

~̀
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