
     

   

           
             

             
              

               
         

                 
            

             
             

        

 

        
       

       
       

      

 

             
       

          
 

       
        

       
          

    
     

         
      

      
        

        
        
        

 
        

       
       

        
      

         
         
        

Pulsed Nuclear Magnetic Resonance: Spin Echoes 

MIT Department of Physics 

This experiment explores nuclear magnetic resonance (NMR) both as a physical phenomenon 
concerning atomic nuclei and as a ubiquitous laboratory technique for exploring the structure of 
bulk substances. Using radio frequency bursts tuned to resonance, pulsed NMR perturbs a thermal 
spin ensemble, which behaves on average like a magnetic dipole. One immediate consequence is the 
ability to measure the magnetic moments of certain nuclei such as hydrogen (i.e., the proton) and 
flourine; the former is of particular interest to nuclear physics. 

In addition, the use of techniques like spin echoes lead to a myriad of pulse sequences which allow 
the determination of spin-lattice and spin-spin relaxation times of substances. Among the samples 
available in this lab are glycerin and paramagnetic ion solutions, whose viscocity and concentration 
strongly affect their relaxation times. Investigation of these dependences illustrate the use of pulsed 
NMR as a method for identifying and characterizing substances. 

PREPARATORY QUESTIONS 

Please visit the Pulsed NMR chapter on the course 
website to review the background material for this 
experiment. Answer all questions found in the chapter. 
Work out the solutions in your laboratory notebook; 
submit your answers on the website. [Note: Not available 
to OCW users.] 

PROGRESS CHECK 

By the end of your 2nd session in lab you should have a 
determination of the nuclear magnetic moment of fluo-
rine. You should also have a preliminary value of T2 for 
100% glycerine. 

I. BACKGROUND 

The NMR method for measuring nuclear magnetic mo-
ments was conceived independently in the late 1940s by 
Felix Bloch and Edward Purcell, who were jointly 
awarded the Nobel Prize in 1952 for their work [1–4] Both 
investigators, applying somewhat different tech-niques, 
developed methods for determining the magnetic 
moments of nuclei in solid and liquid samples by mea-
suring the frequencies of oscillating electromagnetic fields 
that resonantly induced transitions among their magnetic 
substates, resulting in the transfer of energy between the 
sample of the measuring device. Although the amounts of 
energy transferred are extremely small, the fact that the 
energy transfer is a resonance phenomenon enabled it to 
be measured. 
Bloch and Purcell both irradiated their samples with a 

continuous wave (CW) of constant frequency while simul-
taneously sweeping the magnetic field through the reso-
nance condition. CW methods are rarely used in modern 
NMR experiments. Rather, radiofrequency (RF) energy is 
usually applied in the form of short bursts of radiation 
(hence, the term ”pulsed NMR”), and the effects of the 
induced energy level transitions are observed in the time 

between bursts. More important, as we shall see, the 
techniques of pulsed NMR make it much easier to sort 
out the various relaxation effects in NMR experiments. 
Nevertheless, this experiment demonstrates the essen-

tial process common to all NMR techniques: the detec-
tion and interpretation of the effects of a known perturba-
tion on a system of magnetic dipoles embedded in a solid 
or liquid. As we shall see, this analysis of the system’s 
response to what is essentially a macroscopic perturba-
tion yields interesting information about the microscopic 
structure of the material. 

II. THEORY 

II.1. Free Induction of a Classical Magnetic 
Moment 

In classical electromagnetism, a charged body with 
nonzero angular momentum L possesses a quantity called 
a magnetic moment µ, defined by 

µ = γL, (1) 

where γ is the body’s gyromagnetic ratio, a constant 
depending on its mass and charge distribution. For a 
classical, spherical body of mass m and charge q dis-
tributed uniformly, the gyromagnetic ratio is given by 

q
γcl = . (2)

2m 

The magnetic moment is an interesting quantity be-
cause when the body is placed in a static magnetic field 
B0, it experiences a torque 

dL 
= µ × B0. (3)

dt 

This equation of motion implies that if there is some 
nonzero angle α between L and B0, its axis of rotation 
L precesses about B0 at the rate 
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ωL = −γclB0 (4) 

independently of the value of α, much like the behavior 
of a gyroscope in a uniform gravitational field. The mi-
nus sign indicates that for a body with positive γ (e.g., 
positively charged sphere), the precession is clockwise. 
This phenomenon is called Larmor precession, and we 
call ωL =| ωL | the Larmor frequency. 
Suppose B0 = B0ẑ; in this case, the x-y plane is 

called the transverse plane. Next, suppose we place a 
solenoid around the magnetic moment, with the axis of 
the solenoid in the transverse plane (e.g., aligned with 
x̂). If α is nonzero, there is a nonzero transverse compo-
nent of µ, which generates an oscillating magnetic field at 
the Larmor frequency. By Faraday’s law, this transverse 
component induces an emf 

V (t) = V0(α)cos(ωLt + φ0). (5) 

The phase φ0 is simply the initial transverse angle be-
tween the µ and the solenoid axis, while V0 is an overall 
factor that incorporates constants like the overall magni-
tudes of µ, signal amplification, and solenoid dimensions. 
It is worth noting, however, that V0 is a function of α: 
when α is zero, there is no signal, and as α is moved to-
wards π/2, the signal reaches a maximum when µ lies in 
the transverse plane, which then decreases back to zero 
at α = π when µ is antiparallel to B0, and so on. 
But regardless of its magnitude, the induced emf al-

ways oscillates at the characteristic Larmor frequency. 
We call this detected voltage oscillation the free induc-
tion NMR signal. It is this signal with which NMR is pri-
marily concernedwe manipulate the magnetic moment of 
a sample and monitor the behavior of the free induction 
signal to understand its bulk material properties. 

II.2. Nuclear Magnetism 

In quantum mechanics, it is a fact that particles (i.e., 
electrons, protons, and composite nuclei) possess an in-
trinsic quantity of angular momentum known as spin, 
which cannot quite be understood as any form of classical 
rotation. The particle’s spin angular momentum along 
any given direction is quantized, andfor a spin − 1 parti-2 
cletakes on the values of +~/2 and −~/2, corresponding 
to two states we usually refer to as ”spin-up” and ”spin-
down”. The general state (wavefunction) of any such 
two-state system is a complex superposition of these two 
eigenstates. We sketch a rough picture below of how 
macroscopic nuclear magnetism comes out of this micro-
scopic framework; for more accurate details, see [5, 6]. 
There is no reason we should expect such a system 

to behave anything like a classical particle with angular 
momentum. Yet, as shown in Appendix A, the wave-
function for any two-state system can be visualized as a 

vector in the Bloch sphere, using the relative phases in 
the superposition as direction angles. And it turns out 
that in this picture, when a charged quantum spin such 
as an atomic nucleus is placed in a static magnetic field, 
the wavefunction does indeed exhibit an analogue of Lar-
mor precession in the Bloch sphere. Of course, there are 
key differences. For one thing, the precession frequency 
is not the same, owing to quantum effects. The difference 
is captured by changing the gyromagnetic ratio: 

γ = gγcl. (6) 

This corrective g-factor is analogous to the Landé g-
factor in atomic spectroscopy and varies from nuclei to 
nuclei. We retain the definition of the magnetic mo-
ment, so that in an eigenstate of angular momentum, 
the magnitude of the magnetic moment in that direction 
is µ = γ~/2. 
More significantly, however, precession of the wave-

function in the Bloch sphere is not quite the same as 
a precession in real space. For example, with a classi-
cal magnetic moment µ aligned at some nonzero angle α 
with ẑ, it is possible to measure precisely both µx = µ · x̂
and µz = µ · ẑ. But Heisenberg’s uncertainty principle 
forbids simultaneous measurements of both quantum op-
erators and µ̂x, µ̂z even though the wavefunction vector 
in the Bloch sphere has well-defined projections onto x̂ 
and ẑ. 
Nevertheless, the expectation of the quantum magnetic 

moment does behave exactly like the classical magnetic 
moment, in the limit of a large number of repeated mea-
surements (a case of Ehrenfest’s theorem). It is precisely 
this correspondence that NMR relies on. But rather than 
making repeated measurement of a single quantum spin, 
we make an ensemble measurement of a large number of 
spins at once. If their wavefunctions are approximately 
the same (i.e., the spins are ”coherent”), then the en-
semble should exhibit a macroscopic, classical magnetic 
moment. 
More precisely, what we measure in NMR is M = N 

h µ̂ i , or the expectation of the quantum magnetic mo-
ment averaged over the bulk ensemble, multiplied by the 
number of spins which are coherent. Since the volume of 
our sample is fixed, this is proportional to the magnetiza-
tion, and we will simply refer to M as the ”magnetization 
vector” of the sample. Our conclusion is that M exhibits 
the exact same dynamics as the classical magnetic mo-
ment µ , generating an NMR free induction signal at the 
Larmor frequency ωL = γB0. It is worth noting that this 
macroscopic ensemble does indeed capture the quantum 
nature of the spins, by way of the non-classical gyromag-
netic ratio γ. 

II.3. Pulsed NMR 

As suggested in Problem 3, the equilibrium state for 
a system of spins in a static magnetic field B0 = B0ẑ
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produces a small magnetization M0 = M0ẑ in the same 
direction as the magnetic field. However, we also know 
that such a configuration in which α = 0 still does not 
result in a free induction signal. We also need a way 
of perturbing the spins out of equilibrium, to generate 
a transverse component of the magnetization. We use a 
method called pulsed NMR in order to achieve this. 
In pulsed NMR, the same solenoid that is used to pick 

up a transverse magnetization can also be used to gen-
erate an RF field around the sample. We focus on the 
generation of a magnetic field 

B1(t) = B1 cos ωtx̂ (7) 

It is standard to take B1 << B0, so that the field B1 

can be treated as a perturbation. We then proceed to 
examine the behavior of M in response to this perturbing 
field. 
We first note that we can write B1 as a superposition 

of two counter-rotating magnetic fields: 

B1
Br(t) = (cos ωtx̂+ sin ωtŷ) (8)

2 

B1
Bl(t) = (cos ωtx̂+ sin ωtŷ) (9)

2 

Thus, B1 = Br + Bl. For nuclei with positive gyro-
magnetic ratio, Bl rotates in the same direction as the 
magnetization (clockwise), while Br rotates in the oppo-
site direction (counter-clockwise). 
We now consider the situation from the point of view of 

an observer in a reference frame rotating in the direction 
of precession (that is, clockwise) with angular velocity ω. 
The unit vectors in this rotating frame are 

x̂0 = cos ωtx̂− sin ωtŷ (10) 

ŷ0 = sin ωtx̂− cos ωtŷ (11) 

ẑ0 = ẑ (12) 

A moment’s thought will confirm that in the x y coor-
dinate system, the x0 y0 system is indeed rotating clock-
wise with angular velocity ω. 
In this rotating frame, the field Bl appears to be 

stationary, while Br appears to be rotating counter-
clockwise at a rate 2ω. This can be shown directly by 
solving for x̂ and ŷ in terms of x̂0 and ŷ0 in the equa-
tions above and substituting. The result is that the two 
rotating components become 

B1
Br = (cos 2ωtx̂0 + sin 2ωtŷ0) (13)

2 

1 
Bl = Blx̂0 (14)

2 

On the other hand, the static magnetic field does not 
appear any different, and B0 = B0x̂0. 
The total magnetic field in the rotating frame is, of 

course, B = B0 +B1. But this magnetic field shouldeven 
in the rotating frameinduce a Larmor precession. The 
precession angular velocity of the magnetization vector 
in this frame is 

Ω = −γB + ωẑ0 (15) 

where the extra term comes from the kinematic mo-
tion of the rotating frame (as if there were a fictitious 
magnetic field opposing B0 ). Written more explicitly in 
terms of components, we have 

γB1 γB1
Ω · x̂0 = − − cos 2ωt (16)

2 2 

γB1
Ω · ŷ0 = − sin 2ωt (17)

2 

Ω · ẑ0 = −γB0 + ω (18) 

Now the crucial point: when the frequency of the per-
turbing field satisfies ω = γB0 = ωL (on resonance with 
the natural Larmor frequency), the rapid precession due 
to B0 vanishes in the rotating frame, and all that remains 
is a constant, slow precession about x̂0 at the rate γB1/2, 
with only the addition of tiny time-dependent flutters 
(the sines and cosines), which average out to zero. 
If M is initially parallel to B0, then application of the 

perturbing pulse B1 for a time 

π 
t90 = (19)

γB1 

evidently rotates M by 90◦ about x̂0, placing M in the 
transverse plane perpendicular to B0. If the pulse is now 
turned off, M is left in the transverse plane, and from 
the point of view of an observer in the laboratory frame, 
it will be precessing at the Larmor frequency γB0 about 
ẑ. By a similar argument, application of the perturbing 
pulse for a time t180 = 2t90 rotates M by 180◦, inverting 
the spin population. In practice, the value of 1 is not 
well-known, so t90 is usually found by trial and error, 
usually by looking for the pulse width which yields the 
greatest transverse magnetization. 

II.4. Relaxation 

Owing to the microscopic nature of nuclear magnetism, 
the free induction signal does not persist for very long. 
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FIG. 1. An idealized scope trace of a free induction decay 
signal, showing also the decay envelope. The thick black line 
indicates the 90◦ perturbing pulse that puts the magnetiza-
tion into the transverse plane. The decay constant T2 

∗ consists 
of both the T2 effect discussed below as well as the effect of 
field inhomogeneities (discussed next section). Due to the 
latter effect, T2 

∗ >> T1 in the real NMR setup. 

Once perturbed, the spins proceed to return towards 
equilibrium, in a process called relaxation. Relaxation 
is one of the keys to the utility of NMR: different sub-
stances return to equilibrium at different rates and in 
different ways; analysis of the relaxation times of a sam-
ple gives significant insight into its chemical composition 
and structure. 
Relaxation mechanisms (and other effects, as discussed 

in the following section) result in an exponential decay 
in the free induction NMR signal, which manifests itself 
as the ubiquitous free induction decay (FID) signal, a 
sketch of which is shown below. 
There are two relaxation mechanisms which are of 

physical interest in this lab. The first is the eventual 
recovery of longitudinal magnetization (that is, magneti-
zation along B0 ), due to rethermalization of the system. 
The second, which occurs even in the absence of the first, 
is the loss of transverse magnetization due to decoherence 
of the spins. Both of these mechanisms contribute to the 
decay observed in the FID, and the rates at which they 
occur depend on the substance in question. 
The first mechanism is typically called spin-lattice re-

laxation and the time constant governing its rate is de-
noted T1. Its name derives from the fact that rethermal-
ization is caused by the redistribution of energy from the 
spins to their surrounding environment (the ”lattice”). 
This has the effect of dissipating the energy of the pulse 
until the entire sample has returned to its original ther-
mal state. If we use a 90◦ pulse to send the magnetization 
into the transverse plane at t = 0, then the spin-lattice 
relaxation process can be described by saying Mz recov-
ers according to 

−t/T1 ),Mz(t) = M0(1 − e (20) 

where M0 is the magnitude of the longitudinal mag-

netization at thermal equilibrium. Of course, as Mz re-
covers, the transverse magnetization correspondingly de-
creases. 
The second mechanism is typically called spin-spin re-

laxation and the time constant governing its rate is de-
noted T2. Its name derives from the idea that, as the 
spins are precessing, they feel small fluctuations in the 
magnetic field from magnetic dipole interactions of neigh-
boring spins (perhaps other nuclei on the same molecule), 
which leads to randomization of the spin’s precessional 
motion. This causes the spinswhich were initially precess-
ing in phase and constructively contributing to the trans-
verse magnetizationto decohere and begin destructively 
interfering, diminishing the observed transverse magne-
tization. This spin-spin relaxation process, like the spin-
lattice relaxation, is an irreversible process, and it can 
be described by saying that the transverse magnetization 
Mxy decays according to 

−t/T2Mxy(t) = M0e (21) 

where M0 is the initial transverse magnetization at t 
= 0 right after a 90◦ pulse. 
Most of the measurement techniques used in this lab 

center on the goal of obtaining these relaxation times for 
various substances. In particular, we are interested in 
how these relaxation times change as we vary the prop-
erties of the substance such as concentration or viscos-
ity. Typically, experiments to determine T1 perturb the 
system, let it relax, and then attempt to measure the re-
covered longitudinal magnetization. On the other hand, 
experiments to find T2 rely on making observations of 
how the FID signal decays. 

II.5. Spin Echoes 

Although we are primarily interested in relaxation, 
there are other effects that contribute to the decay in 
the FID. The most important of these is inhomogene-
ity in the magnetic field. A global inhomogeneity in the 
static magnetic field B0 can cause parts of the sample 
to precess at different rates, leading to phase differences 
and a loss of the ensemble-averaged transverse magneti-
zation much more quickly than would be expected from 
just spin-spin interactions alone. 
In fact, for simple NMR setups such as the one used in 

this lab where the static magnetic field is maintained by 
permanent magnets, such field inhomogeneities dominate 
relaxation. The observed decay constant of the FID is 
typically denoted T2 

∗, and it consists of two components: 

1/T ∗ = 1/T2 + γΔH0, (22)2 

where T2 is the spin-spin relaxation time and ΔH0 is a 
measure of the inhomogeneity of the magnetic field over 
the sample volume. 
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FIG. 2. An idealized scope trace for a spin-echo sequence, 
in a setup where T2 >> T 2 

∗ . The thick black lines indicate 
the perturbing pulses used to implement the pulse sequence. 
Notice the spin echo is produced at time 2τ . 

Fortunately, however, the effect of field inhomo-
geneities is to some extent a reversible process; it is more 
of a dispersion effect than decoherence. Even after the 
FID has decayed away, it is possible to recover the trans-
verse magnetization, up to whatever amount has been 
irreversibly lost in relaxation. This recovery was discov-
ered by Erwin Hahn in 1950 and is known as a spin echo. 
The spin echo pulse sequence can be described as 

90◦τ 180◦, or a 90◦ pulse, after which the FID is allowed 
to decay away for time τ , at which point a 180◦ pulse 
is applied. A spin echo forms at a time τ after this last 
pulse, as shown in the figure below. 
To see how the spin echo is produced, consider a typi-

cal sample which has small regions of uniform magnetic 
field, but such that the field differs from one region to 
the next. Following a 90◦ pulse, spins in a region of rela-
tively high magnetic field precess faster, while those in a 
region of relatively low magnetic field process slower. By 
a time τ later, the phases of the magnetization across dif-
ferent regions disagree sufficiently to degrade the overall 
magnetization. 
But the spins within each individual region are still 

coherent and precessing in the transverse plane. The 
application of a 180◦ pulse has the effect of reflecting 
these transverse spins about the direction of the applied 
pulse. The spins continue to precess, but their relative 
motion is now precisely reversed. Thus, those regions 
which were precessing faster and accumulated more phase 
difference now undo their phase accumulation at a faster 
rate. The result is that a time τ after the 180◦, all the 
regions are back in phase and the total magnetization 
reaches a maximum, producing a spin echo. 
The use of a spin echo allows us to obtain dispersion-

free access to the transverse magnetization. Looking at 
the height of the spin echo generated effectively tells us 
what the amplitude of the FID would have been at time 
2π if field inhomogeneity were not present. If T ∗ <<2 
T2, which is usually the case in setups like ours, this 

FIG. 3. 

is information that would have been difficult to obtain 
without the spin echo technique. 

Of course, there are limitations to the technique. It is 
possible for spins in one region of uniform magnetic field 
to diffuse randomly to another. If this diffusion happens 
within the duration 2π required to execute the spin echo 
pulse sequence, then the precise dephasing process we 
described would no longer hold, and the spin echo am-
plitude would be reduced beyond just relaxation. Carr 
and Purcell in 1954 showed [7] that when we add in the 
effects of diffusion, the echo amplitude produced goes as 

E(2π) = E0exp(− 
2τ − 

2 
γ2G2Dτ3), (23)

T2 3 

where E0 is the echo amplitude in the absence of both 
spin-spin and diffusion effects (i.e., the initial FID ampli-
tude). Here, G is the gradient of the inhomogeneous field 
and D is the diffusion constant. Thus, the effect worsens 
the longer we wait to produce a spin echo. 

III. APPARATUS 

III.1. Apparatus Overview 

The experimental apparatus, shown schematically in 
the following figure, consists of a gated RF pulse gen-
erator with variable pulse widths and spacings, a probe 
circuit that delivers RF power to the sample and picks 
up the signal from the sample, a preamp that amplifies 
the signal, and a phase detector which outputs an au-
dio signal whose frequency corresponds to the difference 
between the Larmor frequency and the frequency of the 
signal generator. Details of how to design and build NMR 
probes can be found in R. Ernst and W. Anderson, Rev. 
Sci. Instrum. 37, 93 (1966). 
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III.2. Permanent Magnet 

This experiment uses a permanent magnet whose field 
is about 1770 gauss (0.177 Tesla). Care should be taken 
to avoid bringing any magnetizable material (such as iron 
or steel) near the magnet as this may be pulled in and 
damage the magnet. 
When performing the experiment, you should try to 

find a region where the magnetic field is most uniform to 
insert your sample and label the position of the probe for 
reproducibility between experiment runs. 

III.3. RF Signal Chain 

Although it is the policy in Junior Lab to discour-
age the use of pre-wired experiments, there are two 
reasons why the present set-up should not be (lightly) 
changed. Several of the components, particularly the 
double-balanced mixers (DBM) and the low-level TRON-
TECH pre-amplifier, are easily damaged if the RF power 
level they are exposed to exceeds their specified limit. 
Furthermore, the lengths of some of the cables have been 
specifically selected to fix the relative phase relationship 
of different signals. 
The RF pulse generating system is made up of a 15 

MHz frequency synthesizer (Agilent 33120A), a digital 
pulse programmer based on a STAMP micro-controller, 
a double-balanced mixer used as an RF switch (Mini-
Circuits ZAS-3), a variable attenuator, and an RF power 
amplifier capable of 2 watts output. 
The frequency synthesizer feeds a +10 dBm RF sine 

wave to the power splitter. The power splitter keeps all 
impedances appropriately matched while feeding one half 
of the RF power to a double-balanced mixer (DBM) used 
as a gate for the RF. The other half is used as a refer-
ence signal in the phase detector. The gate is opened 
and closed by TTL pulses provided by the digital pulse 
programmer. After the switching stage, the RF pulses 
pass into a constant-gain (+33 dBm) RF power ampli-
fier. The power amplifier feeds the amplified pulsed RF 
into the probe circuit. 

FIG. 5. 

The signal out of the sample, as well as a considerable 
amount of leakage during pulses, comes from the probe 
circuit, and is amplified by a sensitive preamp (Tron-
Tech W110F). The signal then goes into a phase detector 
(Mini-Circuits ZRPD-1), where it is mixed with the ref-
erence signal coming out of the other port of the power 
splitter. Since the NMR signal is, in general, not pre-
cisely at the frequency of the transmitter, when the two 
signals are mixed, a signal is produced at the dierence 
frequency of the resonance signal and the applied RF. 
Since we are looking at NMR signals in the vicinity of 
1-8 MHz, mixing this down to a lower frequency makes 
it easier to see the structure of the signal. 

III.4. Digital Pulse Programmer 

Most of the controls that you will manipulate are on 
the digital pulse programmer, the oscilloscope or the 
function generator. The keypad of the Digital Pulse Pro-
grammer is shown in the figure. Press any of the four 
buttons on the right to select a parameter (First Pulse 
Width (PW1), Second Pulse Width (PW2), Tau (τ ), 
or Repeat Time). Then use the arrow buttons to set 
the corresponding time for that parameter. The default 
times are: PW1 = 24 s, PW2 = 48 s, τ = 2 ms, and 
Repeat Time = 100 ms. Note that when the repeat time 
or τ is long, the pulse programmer responds slower as 
it needs to complete one cycle to change the settings. 
The top two buttons on the left determine whether a 
two-pulse sequence occurs only once (the Single Pair of 
Pulses button), or repeats continuously (the Repeated 
Pairs of Pulses button) with a pause between sequences 
of a length set by the Repeat Time parameter. The 
third button, labeled ”Carr-Purcell”, will create a series 
of pulses corresponding to the Carr-Purcell technique de-
scribed in the Measurement section. Finally, the fourth 
button, ”Three Pulse”, outputs 180◦ − τ − 90◦ − 180◦ 

pulses for a measurement. For this pulse sequence, the 
90◦ pulse time should be set as PW1 and the 180◦ should 
be PW2. 
Set the delay τ , to the minimum position and observe 

the amplified RF pulses from the port marked ”trans-
mitter” on channel 2 of the oscilloscope. The pulses 
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FIG. 6. 

should be approximately 20–30 volts peak-to-peak (note 
that the settings on the function generator should be 2– 
3 volts, since there is an additional amplifier). Choose 
the slowest possible sweep speed; this will enable both 
pulses to be viewed simultaneously. A good starting pair 
of pulse-widths might be 24 s and 48 s, corresponding to 
approximately 90◦ and 180◦ . Now switch to channel 1, 
which displays the output of the phase detector (through 
the low-pass filter). Incidentally, there is another low-
pass filter which is part of the scope itself. On the Tek-
tronix analog scope there is a button marked ”BW limit 
20 MHz”, which limits the allowed bandwidth. This but-
ton should be pressed in (active). On the HP digital 
scope the BW limit is set by one of the soft keys. On an 
Agilent scope, this is set in the channel 1 or channel 2 
menu. Set the y-sensitivity to about 10 mV/div at first. 
Channel 1 will display the NMR signal. Place the glycer-
ine vial in the probe and place the probe in the magnet. 
Now the fun begins! 
Refer to the following figure, which is a highly stylized 

version of the signals you might obtain. The form of the 
voltage displayed during the two bursts is unimportant. 
You will be focusing your attention on the FID signals 
that appear after each burst, and on the echo. For five or 
ten microseconds after the RF pulse the amplifier is still 
in the recovery phase, so this part of the signal should be 
ignored. 

III.5. The Probe Circuit 

The probe circuit is a tuned LC circuit, impedance 
matched to 50 ohms at the resonant frequency for effi-
cient power transmission to the sample. The inductor 
L in the circuit is the sample coil, a ten turn coil of 18 
copper wire wound to accommodate a standard 10mm 
NMR sample tube. The coil is connected to ground at 
each end through tunable capacitors Cm and Ct, to al-
low frequency and impedance matching. Power in and 
signal out pass through the same point on the resonant 
circuit, so that both the power amplifier and the sig-
nal preamp have a properly matched load. Between the 
power amplifier and the sample is a pair of crossed diodes, 
in series with the probe circuit from the point of view of 
the power amplifier. By becoming non-conducting at low 
applied voltages, these serve to isolate the probe circuit 
and preamp from the power amplifier between pulses, 
reducing the problems associated with power amplifier 
noise. The crossed diodes however, will pass the high 

FIG. 7. 

RF voltages that arrive when the transmitter is on. The 
signal out of the probe circuit passes through a quarter-
wavelength line to reach another pair of grounded crossed 
diodes at the input of the preamp. The diodes short the 
preamp end of the cable when the transmitter is on, caus-
ing that end of the cable to act like a short circuit. This 
helps to protect the delicate preamp from the high RF 
power put out by the power amplifier. Any quarter-wave 
transmission line transforms impedance according to the 
following relation: 

Z2 
0Zin = (24)

Zout 

where Z0 is the characteristic impedance of the line. 
Therefore during the RF pulse, the preamp circuit with 
the quarter-wave line looks like an open circuit to the 
probe and does not load it down. Between pulses, the 
voltage across the diodes is too small to turn them on, 
and they act like an open circuit, allowing the small NMR 
signal to pass undiminished to the preamp. 

IV. MEASUREMENTS 

IV.1. Measurements Overview 

The nature of this experiment allows for considerable 
variety in the possible measurement sets which could be 
performed. We present in the following sections several 
well-known techniques in pulsed NMR used to determine 
relaxation times, nuclear magnetic moments, and so on. 
These measurement techniques are applied to various 
samples in order to construct a measurement set meeting 
the basic experimental objectives of this lab. Generally, 
a basic set of measurement in this lab involves the fol-
lowing procedures: 
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1. Examine the signal chain, particularly the probe-
head and the connections in the setup. If necessary, 
readjust the position of the probehead to place the 
sample in a region of more uniform/stronger mag-
netic field. In the initial search for a signal, it is 
helpful to experiment with 100 % glycerin and the 
spin echo sequence, using the two-pulse-repeated 
program with appropriate initial guesses for PW1, 
PW2, and repeat time. Make notes of various 
stages in the signal chain, such as the external trig-
ger and the input and output signals to and from 
the probehead. 

2. Using appropriate samples, determine the Larmor 
frequencies for 1H and 19F by dialing the function 
generator frequency and looking for resonance. Use 
a Hall effect magnetometer to measure the mag-
netic field in the sample coil. Keep in mind that it 
may be necessary to retune the probehead circuit 
and redo the search for signal when working with 
fluorine. 

3. Determine t90, the pulse width that rotates the z -
magnetization into the transverse plane. Note that 
this value can change from session to session, so it 
should be reassessed each time the setup is altered. 

4. Pick a set of samples on which to examine spin-spin 
relaxation times. For each sample in the set, use 
an appropriate NMR pulse sequence to determine 
the value of T2 . Look for interesting trends in T2 

across the sample set. 

5. Pick a set of samples on which to example spin-
lattice relaxation times. For each sample in the 
set, use an appropriate NMR pulse sequence to de-
termine the value of T1. Look for interesting trends 
in T1 across the sample set. 

The space of possible samples that are amenable to 
NMR analysis is obviously enormous, but there are sev-
eral samples which have traditionally been used in this 
lab (and which have been prepared for your use). Except 
for the fluorine-based samples, which are used primarily 
to measure the magnetic moment of the fluorine nucleus, 
most of these samples are based on the 1H nucleus. The 
samples used in this lab include: 

• Glycerin-water mixtures: Various mixtures of glyc-
erin with water, with proportions given in percent-
ages by weight. Spin-spin interactions generally in-
crease with liquid viscosity. Thus, measurements of 
T2 as a function of glycerin ratio are of particular 
interest. 

• Paramagnetic ion solutions: Two ten-fold serial di-
lutions of 0.830M and 0.166 M starting solutions 
of Fe3+ ions. The presence of paramagnetic ions 
greatly facilitates the dissipation of energy from the 
spins to their surroundings. Thus, measurements of 

T1 as a function of concentration are of particular 
interest. 

• Fluorine samples: There are samples of both triflu-
oric acetic acid and hexafluorobenzene at the setup. 
The former is a strong acid and should be treated 
with care. 

• Water: There are a number of potentially inter-
esting but somewhat difficult measurements which 
could be done with water. These are discussed later 
for those interested. 

IV.2. Suggested Progress Check 

The optimal schedule for this lab is highly dependent 
on what measurement sets are planned. In general, it is 
a good idea to focus on utilizing one technique for each 
of T1 and T2 measurements and apply that technique to 
a set of samples (say, glycerin for T2 and paramagnetic 
ions for T1) in order to obtain a trend. Additional sample 
sets and pulse sequences (or even variations on the pulse 
sequences) can then be added once those measurements 
are complete. 
Each sample set generally takes between one to two lab 

sessions, so approximately three lab sessions should be 
dedicated to performing relaxation measurements. The 
remaining sessions should be used in the beginning to fa-
miliarize yourself with the equipment and to determine 
the magnetic moments of the hydrogen and fluorine nu-
clei. Delays sometimes occur when signal is lost due to 
equipment changes or subtle changes in oscilloscope set-
tings. In such cases, after obvious debugging has been 
done, it is best to obtain the help of a lab technician 
rather than to spend too much time tracking down a 
problem. 

IV.3. Finding Larmor Frequencies 

The signal seen at the oscilloscope is the FID emitted 
by the sample at frequency γB0, mixed with a steady 
signal of frequency ω from the function generator. The 
latter is the signal used to pulse the sample at near res-
onance. This produces a beat signal which has the same 
decay envelope as the FID but which has a comparatively 
low frequency |γB0 − ω| that can easily be picked up by 
an oscilloscope. This is manifested on the oscilloscope as 
a decaying sinusoid at frequency |γB0 − ω|. 
It follows that in order to determine the Larmor fre-

quency, we need to tune the function generator frequency 
ω until the beat frequency vanishes: 

|γB0 − ω| = 0. (25) 

The value of ω read off from the function generator 
is thus a measurement of the Larmor frequency of the 
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sample magnetization. On the scope, the approach to 
resonance should look like a decaying sinusoid as its fre-
quency goes to zero (or its period goes to infinity): the 
result is simply an exponential decay. 
Another way to think about this measurement is to 

consider the mixing as a ”stroboscopic” view of the mag-
netization vector with strobe frequency ω, used to ob-
serve the precessing magnetization which has natural fre-
quency γB0. When the strobe frequency matches the 
natural frequency, the magnetization vector appears to 
stay stationary in the transverse plane, and it simply ap-
pears to decay away with the time constant T ∗ .2 
Once the Larmor frequency ω = γB0 has been found, 

it is necessary also to measure the magnetic field seen by 
the sample. This is accomplished using a Hall effect mag-
netometer, which is shared by several other experiments 
and so is not a part of the permanent setup. Make cer-
tain to zero and calibrate the magnetometer before use 
and make measurements perpendicular to the magnetic 
field lines. Estimate the variations in the magnetic field 
over the sample. 
Once the resonance frequency has been found, it is 

useful to return the oscillator frequency back to being 
slightly off resonance. Being able to observe a beat signal 
carried by the exponential decay envelope makes identi-
fying and assessing pulse sequences easier. As long as 
ω ≈ γB0, it is still possible to perform rotations of the 
magnetization. Adjust ω around resonance to obtain a 
satisfactory FID signal. 

IV.4. Finding Pulse Widths 

To obtain an FID signal, it is unnecessary to use the 
exact value of t90 when pulsing the sample. When first 
searching for a signal or when making resonance mea-
surements to find the Larmor frequency, almost any rea-
sonable initial guess for PW1 will result in an observable 
FID signal (since α 6 0) . However, when utilizing es-= 
tablished NMR pulse sequences, it is important to have 
accurate values of t90 and t180 to use. 
As we mentioned before, it is difficult to know the 

magnitude of the perturbing field B1, so the formula 
t90 = π/γB1 is not very helpful. However, we do know 
the amplitude of the FID should be maximum after a 90 
pulse and minimum or zero after a 180 pulse. Thus, one 
easy way to obtain the pulse widths is to find the setting 
of PW1 which minimizes the FID. This gives t180 and 
halving that gives t90. 
Another method is to use spin echoes. Set PW1 to 

some initial value and set PW2 to be exactly twice PW1. 
Then adjust PW1 (keeping PW2 twice PW1) until a spin 
echo is visible and is maximal. Then PW1 gives t90 while 
PW2 gives t180 . Obviously, there are many other ways 
in which the pulse widths can be obtained. 
Experiment with these or other techniques in order to 

estimate the 90◦ and 180◦ pulse widths as closely as possi-
ble. However, it is important also to realize that the pulse 

programmer is only capable of setting PW1 and PW2 in 
units of 1 s each. Thus, it is only profitable to narrow 
down the pulse widths to within one or two microsec-
onds. Generally, pulse sequences and measurements of 
relaxation times work well even if the pulse widths are 
slightly off. When in doubt, it may be helpful to test how 
big of an effect that changes in PW1 and PW2 make on 
specific pulse sequences. 
Note that the values of t90 and t180 are subject to 

change from one session to the next, depending on the 
tuning of the probehead circuit, the power output of the 
function generator, the exact placement of the sample in 
the magnetic field, and so on. Thus, it is a good idea to 
quickly check the pulse widths every session for consis-
tency. 

IV.5. The 90–180 Sequence 

It is evident from our discussion of the spin echo se-
quence that it can be used to make measurements of spin-
spin relaxation and hence T2. In this context, we call the 
spin echo sequence the ”90◦-180◦” pulse sequence (the 
delay time is assumed). Measuring the degradation of 
the spin echo as a function of τ reveals the effect of spin-
spin relaxation, as if the FID were not affected by field 
inhomogeneities. 
This sequence can be configured by setting PW1 equal 

to t90 and PW2 equal to t180 , using the two-pulse-
repeated program on the pulse programmer. The spin 
echo is produced a time 2τ after the initial 90◦ pulse. 
An interesting scope technique applicable to this and 

other pulse sequences is the use of infinite persist. With 
suitable trigger settings, it is possible to see the spin echo 
moving towards the right end of the scope’s screen as we 
increase τ on the pulse programmer. As the spin echo 
moves, its amplitude exponentially decays, and the re-
sult of viewing the whole process under infinite persist 
is a ”decay envelope” traced out by the peak of the spin 
echo. It is up to each group to decide if this is an ap-
proach useful for making measurements, but it is a good 
visualization nevertheless. 

IV.6. The Carr-Purcell Sequence 

As mentioned before, the residual loss of spin echo am-
plitude after a 90◦-180◦ pulse sequence is due not only 
to spin-spin relaxation, and the spin echo suffers an ad-
ditional loss in the presence of diffusion. This is partic-
ularly pronounced for samples with large T2, since such 
samples require a correspondingly large τ when using the 
90-180◦ method. But diffusion effects go as τ3 in the 
exponential, so at large τ they dominate the spin-spin 
relaxation (which go as τ ), thereby causing us to under-
estimate T2. 
This problem was addressed also by Carr and Purcell 

in 1954, and they introduced a sequence (now called the 
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Carr-Purcell sequence) which is much less susceptible to 
diffusion effects [7]. Rather than repeating a pulse se-
quence with ever-increasing delay times, the Carr-Purcell 
method uses a fixed τ , which we can choose small enough 
to neglect diffusion. 
The Carr-Purcell method prescribes the following se-

quence: 

90◦ − τ − 180◦ − 2τ − 180◦ − 2τ − 180◦ − 2τ..., (26) 

continuing for as long as the repeat time allotted. The 
first two pulses are exactly the 90◦-180◦ sequence, and 
a spin echo is produced halfway between the first and 
second 180◦ pulses. But as soon as that spin echo sub-
sides (after the 2τ window has passed), we again pulse 
the sample with a 180◦, causing yet another spin echo to 
appear, and so on. 
Thus, the Carr-Purcell method produces a train of spin 

echoes by repeatedly refocusing the magnetization. With 
each iteration, the spin echo amplitude decays away due 
to spin-spin relaxation, but neither field inhomogeneities 
nor diffusion effects play a role in that decay (if τ is 
chosen small enough). 
The Carr-Purcell sequence can be configured by set-

ting PW1 equal to t90 and PW2 equal to t180, using the 
Carr-Purcell program on the pulse programmer. The re-
peat time effectively determines how many iterations are 
applied before the sequence repeats. 

IV.7. The 90–90 Sequence 

The 90◦-90◦ pulse sequence is the simplest pulse se-
quence used to measure spin-lattice or T1 relaxation. It 
consists of a 90◦ pulse, followed by a delay of time τ , fol-
lowed by another 90◦ pulse. The amplitude of the second 
FID is then measured. It can be configured by setting 
PW1 and PW2 both equal to t90, using the two-pulse-
repeated program on the pulse programmer. 
The idea of the 90◦-90◦ pulse sequence is to first rotate 

a thermalized z -magnetization into the transverse plane, 
and then wait for some delay time τ , during which some 
of the longitudinal magnetization will recover via spin-
lattice relaxation. The second 90◦ pulse then rotates this 
recovered magnetization into the transverse plane, which 
gives an FID with amplitude equal to the recovery. The 
unrecovered component is rotated into the 180◦ position, 
where it does nothing. 

IV.8. The 180–90 Sequence 

The 180◦- 90◦ pulse sequence is a variation on the 
90◦90◦, also used to measure T1. It consists of a 180◦ 

pulse, followed by a delay of time τ , followed by a 90◦ 

pulse. The amplitude of the FID produced by the last 
pulse is measured. It can be configured by setting PW1 

to t180 and PW2 to t90, using the two-pulse-repeated pro-
gram on the pulse programmer. 
In the 180◦-90◦ pulse sequence, the thermalized z -

magnetization is flipped, inverting the spin population. 
Relaxation then proceeds by first reducing the magneti-
zation back towards zero and then finally to equilibrium. 
(This pulse sequence is sometimes called an ”inversion 
recovery” for this reason.) After allowing this process to 
occur for a time τ , a 90◦ pulse is applied, bringing the 
recovered magnetization into the transverse plane, where 
it generates an FID. 
Unlike the 90◦-90◦, the magnetization in this case ac-

tually reverses, going through zero at time T1 ln 2. How-
ever, the amplitude of the FID is insensitive to the sign 
of the magnetization prior to the 90◦ pulse (which would 
show up as a phase shift in the sinusoid), so the FID am-
plitude as seen through the scope will appear to shrink 
with small enough τ , go through zero, and then expo-
nentially recover at large τ . 

IV.9. The Three-Pulse Sequence 

The 90◦–90◦ and 180◦–90◦ pulse sequences have the 
disadvantage that they require reading the amplitude of 
the FID which occurs immediately after an RF pulse. 
This problem was addressed several years ago by two 
Junior Lab students, who proposed a variation, the 
”three-pulse” sequence. (Both of these students, Rahul 
Sarpeshkar and Isaac Chuang, are now MIT professors.) 
The three-pulse sequence consists of a usual inversion 

recovery sequence, so the first 180◦ pulse inverts the ther-
malized z -magnetization, and after a delay of τ , the sec-
ond 90◦ pulse rotates the recovered z -magnetization into 
the transverse plane, where it generates an FID. But in-
stead of measuring the FID, we wait an additional (non-
variable) time � before applying another 180◦ pulse. The 
effect of this last pulse is to cause a spin echo, whose am-
plitude reflects the amplitude of the FID. But since the 
spin echo is separated in time from the RF burst, it is 
much easier to measure. The amplitude of the spin echo 
after the third pulse as a function of τ thus follows the 
same trend as in the 180−90◦ sequence. 
The three-pulse sequence can be configured by setting 

PW1 to t90 and PW2 to t190, and then using the three-
pulse program on the pulse programmer. The second 
time delay �cannot be set manually, and has been pro-
grammed to be about 1 ms. The time � is kept small to 
minimize spin-spin effects that might occur. 

IV.10. Relaxation in Water 

In describing the various pulse sequences, we assumed 
for the most part that the two relaxation mechanisms 
are not simultaneously important. For example, when 
measuring T2 , we assume that a negligible amount of 
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the spin echo decay is due to actual recovery of the z -
magnetization via spin-lattice relaxation. For the most 
part, this assumption is valid when working with samples 
in which one relaxation constant is drastically smaller 
than the other (e.g., T2 << T1 in viscous liquids and 
T1 << T2 in paramagnetic solutions). 

Of course, whether this assumption is valid for any 
particular sample is something which deserves considera-
tion in analyzing your results. In fact, this assumption is 
not quite true for many samples used in NMR, where T1 

and T2 are usually comparable. An important example is 
water, where both of the relaxation constants are on the 
order of several seconds, making measurements of both 
quite difficult. 

There is, however, at least one interesting way to mea-
sure T1 in water which deserves mentioning. As discussed 
previously, if we want each pulse sequence to yield an in-
dependent measurement, we must set the repeat time on 
the pulse programmer sufficiently large to allow rether-
malization. For example, executing two spin echo se-
quences too close together will make the second spin echo 
appear smaller. This suggests that we can actually take 
advantage of this fact to make a measurement of T1 us-
ing spin echoes and by varying not the delay time but 
the repeat time. 

Use the standard spin-echo sequence (90◦–180◦) with 
some fixed time constant τ . Record the spin echo height 
produced when repeating the sequence using a variable 
repeat time; the spin echo height as a function of the 
repeat time should give the exponential return of the 
magnetization with time constant T1. For higher repeat 
times higher than 3 s, you can use the two-pulse-single 
program on the pulse programmer and a watch, rather 
than the two-pulse-repeated program. As an optional 
experiment, perform these measurements with both tap 
water and distilled water. Is it possible to detect the 
difference? 

The first measurements of T1 in distilled water stood 
for about thirty years. Since then, careful measurements 
have produced a number which is about 50% higher. The 
difference is due to the effect of dissolved oxygen in the 
water, as O2 is paramagnetic. As an optional experiment, 
try to remove the dissolved oxygen from a sample of dis-
tilled water and see if there is any difference. One way 
this could be done is by bubbling pure nitrogen through 

the water, as N2 is diamagnetic. 

V. ANALYSIS 

Due to the wide range of possible measurements in 
this experiment, there is a corresponding variety in the 
particular analysis approach that best suits your data set. 
However, some results that are often presented include 
the following: 

• The Larmor frequencies and gyromagnetic ratios of 
the proton and 19F nucleus. 

• Demonstration of the successful use of a pulse se-
quence to measure the spin-lattice relaxation time 
T1 across a range of samples (e.g., paramagnetic 
ion solutions). 

• Demonstration of the successful use of a pulse se-
quence to measure the spin-lattice relaxation time 
T2 across a range of samples (e.g., paramagnetic 
ion solutions). 

The idea is to structure the measurement sets and anal-
ysis so that you can make a case for the effectiveness of 
NMR as a way of probing the microscopic structure of 
your samples, by demonstrating measurements that are 
sensitive to changes in the material structure. You may 
find throughout the experiment that some samples are 
easier to work with than others. Time constraints can 
also dictate which measurement sets to use and what 
analysis approach to take. 
One interesting idea often pursued is to reproduce the 

early results by Bloembergen and Purcell when working 
with water-glycerin mixtures, such as those in [2] and 
Bloembergen’s thesis [8]. They found that plotting the 
relaxation constants against logarithm of viscosity (or 
concentration) resulted in interesting curves as the vis-
cocity (concentration) varied over a large range. Tables 
relating percent weight of glycerin to viscosity can be 
found in tables like this one collected by DOW. 
Remember as always to address sources of errors or 

uncertainty in your results, quantitatively whenever pos-
sible. Each pulse sequence is susceptible to different 
sources of systematic effects (e.g., diffusion in the 90◦180◦ 

sequence), so interpretation of the results needs to take 
into account an understanding of the physics behind the 
technique. In some ways, this one of the central ideas 
behind NMR spectroscopy. 
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Appendix A: Quantum Mechanical Description of 
NMR 

Recall that for all spin-1/2 particles (protons, neu-
trons, electrons, quarks, leptons), there are just two 

1eigenstates: spin up |S, Sz i = | 1 , i ≡ |0i and spin down 2 2 
|S, Szi = | 1 , − 1 i ≡ |1i. Using these as basis vectors, the 2 2 
general state of a spin-1/2 particle can be expressed as a 
two-element column matrix called a spinor : � � 

u|ψi = u|0i + d|1i = . (A1)
d 

Normalization imposes the constraint |u|2 + |d|2 = 1. 
The system is governed by the Schrödinger equation 

d 
i~ |ψi = H|ψi, (A2)
dt 

which has the solution |ψ(t)i = U |ψ(0)i, where U = 
−iHt/~ e is unitary. In pulsed NMR, the Hamiltonian 

~H = −~µ · B = −µ [σxBx + σyBy + σzBz ] (A3) 

is the potential energy of a magnetic moment placed in 
an external magnetic field. The σi are the Pauli spin 
matrices: � � 

0 1 
σx ≡ ,

1 0 � � 
0 −i 

σy ≡ ,
i 0 � � 
1 0 

σz ≡ . (A4)
0 −1 

Inserting Equations (A4), (A1), and (A3) into Equa-
tion (A2), we get 

u̇ = (µ/~) [iBx + By ] d + i(µ/~)Bz u, 

ḋ = (µ/~) [iBx − By ] u − i(µ/~)Bzd. (A5) 

If Bx = By = 0 and the equations reduce to 

u̇ = i(µ/~)Bzu, 

ḋ = −i(µ/~)Bz d. (A6) 

Integrating with respect to time yields 

i(µ/~)Bz t iω0t/2 u =u0e = u0e , 
−i(µ/~)Bz t −iω0t/2d =d0e = d0e , (A7) 

where ω0 = 2µBz/~ is the Larmor precession frequency. 
If an atom undergoes a spin-flip transition from the spin 
up state to the spin down state, the emitted photon has 
energy E = ω0 ~. 

Now let’s add a small external magnetic field Bx but 
still keeping By = 0 and such that Bx � Bz. Equations 
(A5) become 

u̇ =i(µ/~)Bxd + i(µ/~)Bzu, 

ḋ =i(µ/~)Bxu − i(µ/~)Bzd. (A8) 

For a time varying magnetic field of the type produced 
by an RF burst as in pulsed NMR, Bx = 2Bx0 cos ωt = � � 

iωt −iωt Bx0 e + e . Define ωx ≡ 2µBx0/~. We see that � �
iωt −iωtu̇ =i(ω0/2)u + i(ωx/2) e + e d, � �

iωt −iωtḋ = − i(ω0/2)d + i(ωx/2) e + e u. (A9) 

Using ωx � ω0 (since Bx � B0), we can try for a 
solution of the form 

iω0t/2 u =Cu(t)e , 
−iω0t/2d =Cd(t)e . (A10) 

Inserting Equations (A10) into the differential equations 
(A9) for u and d, we get h iiωx i(ω−ω0)t −i(ω+ω0)tĊ 

u = Cd e + e ,
2 h iiωx i(ω+ω0)t −i(ω−ω0)tĊd = Cu e + e . (A11)
2 

If the system is run near resonance (ω ≈ ω0), then Equa-
tion (A11) becomes 

iωx
Ċ 

u = Cd,
2 
iωx

Ċ 
d = Cu. (A12)

2 

We have also used ω0 � ωx. Taking the derivatives of 
these equations, we see that Cu and Cd act like harmonic 
oscillators of frequency ωx/2. These have the general 
solution 

Cu =a cos (ωxt/2) + b sin (ωxt/2), 

Cd =ia sin (ωxt/2) − ib cos (ωxt/2). (A13) 

Putting these in Equation (A10), we get the solution for 
u and d. These are called Rabi oscillations, valid for 
ωx � ω0. 

Appendix B: Bloch Sphere Representation 

A single qubit in the state u|0i+ d|1i can be visualized 
as a point (θ, φ) on the unit sphere, where u = cos(θ/2), 
d = eiφ sin(θ/2), and u can be taken to be real because 
the overall phase of the state is unobservable. This is 
called the Bloch sphere representation, and the vector 
(cos φ sin θ, sin φ sin θ, cos θ) is called the Bloch vector. 
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The Pauli matrices give rise to three useful classes of 
unitary matrices when they are exponentiated, the rota-
tion operators about the x̂, ŷ, and ẑ axes, defined by the 
equations: 

θ θ−iθσx/2Rx(θ) ≡e = cos I − i sin σx
2 2� � 

θ cos −i sin θ 
2 2= , (B1)θ−i sin θ cos2 2 

θ θ−iθσy /2Ry(θ) ≡e = cos I − i sin σy
2 2� � 

θ cos − sin θ 
2 2= , (B2)

sin θ 
2 cos θ 

2 

θ θ−iθσz /2Rz (θ) ≡e = cos I − i sin σz
2 2� � −iθ/2e 0 

= . (B3)iθ/20 e

One reason why the Rn̂(θ) operators are referred to as 
rotation operators is the following fact. Suppose a single 
qubit has a state represented by the Bloch vector ~λ. Then 
the effect of the rotation Rn̂(θ) on the state is to rotate 
it by an angle θ about the n̂ axis of the Bloch sphere. 
An arbitrary unitary operator on a single qubit can 

be written in many ways as a combination of rotations, 
together with global phase shifts on the qubit. A useful 
theorem to remember is the following: Suppose U is a 
unitary operation on a single qubit. Then there exist 
real numbers α, β, γ and δ such that 

iαRxU = e (β)Ry (γ)Rx(δ). (B4) 

Appendix C: Fundamental equations of magnetic 
resonance 

The magnetic interaction of a classical electromagnetic 
field with a two-state spin is described by the Hamil-

~tonian H = −~µ · B, where µ~ is the spin, and B = 
B0ẑ+B1(x̂ cos ωt+ ŷ sin ωt) is a typical applied magnetic 
field. B0 is static and very large, and B1 is usually time 
varying and several orders of magnitude smaller than B0 

in strength, so that perturbation theory is traditionally 
employed to study this system. However, the Schrödinger 
equation for this system can be solved straightforwardly 
without perturbation theory. The Hamiltonian can be 
written as 

~ω0
H = Z + ~g(X cos ωt + Y sin ωt), (C1)

2 

where g is related to the strength of the B1 field, and ω0 

to B0, and X, Y , and Z are introduced as a shorthand 
for the Pauli matrices. Define |φ(t)i = eiωtZ/2|χ(t)i, such 
that the Schrödinger equation 

i~∂t|χ(t)i = H|χ(t)i (C2) 

can be re-expressed as � � 
~ωiωZt/2He−iωZt/2 −i~∂t|φ(t)i = e Z |φ(t)i. (C3)
2 

Since 

iωZt/2Xe−iωZt/2 = (X cos ωt − Y sin ωt),e (C4) 

Equation (C3) simplifies to become � � 
ω0 − ω 

i∂t|φ(t)i = Z + gX |φ(t)i, (C5)
2 

where the terms on the right multiplying the state can be 
identified as the effective “rotating frame” Hamiltonian. 
The solution to this equation is � � 

ω0 −ω
i Z+gX t 

|φ(t)i = e 2 |φ(0)i. (C6) 

The concept of resonance arises from the behavior of 
this solution, which can be understood to be a single 
qubit rotation about the axis 

2gẑ + x̂ω0 −ω n̂ = r (C7)� �2 
2g1 + ω0−ω 

by an angle s� �2
ω0 − ω |~n| = t + g2 . (C8)
2 

When ω is far from ω0, the spin is negligibly affected 
by the B1 field; the axis of its rotation is nearly parallel 
with ẑ, and its time evolution is nearly exactly that of the 
free B0 Hamiltonian. On the other hand, when ω0 ≈ ω, 
the B0 contribution becomes negligible, and a small B1 

field can cause large changes in the state, corresponding 
to rotations about the x̂ axis. The enormous effect a 
small perturbation can have on the spin system, when 
tuned to the appropriate frequency, is responsible for the 
‘resonance’ in nuclear magnetic resonance. 
In general, when ω = ω0, the single spin rotating frame 

Hamiltonian can be written as 

H = g1(t)X + g2(t)Y, (C9) 

where g1 and g2 are functions of the applied transverse 
RF fields. 

Appendix D: Modeling the NMR Probe 

The material in this appendix was provided by Profes-
sor Isaac Chuang. A tuned circuit is typically used to 
efficiently irradiate a sample with electromagnetic fields 
in the radiofrequency of microwave regime. This circuit 
allows power to be transferred from a source with min-
imal reflection, while at the same time creating a large 
electric of magnetic field around the sample, which is 
typically placed within a coil that is part of it. 
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When these conditions are satisfied, almost all the 
source power goes into the tuned resonator at the res-
onant frequency, thus creating the strongest possible os-
cillating magnetic field inside the coil L. 

FIG. 8. Schematatic diagram of a typical NMR probe circuit. 
The connector on the right goes off to the source and any 
detection circuitry. 

1. Circuit and Input Impedance 

A typical probe circuit, as shown in Figure 9, consists 
of an inductor L, its parasitic coil resistance R, a tuning 
capacitor CT , and an impedance matching capacitor Cm. 
We can analyze the behavior of this circuit using the 
method of complex impedances, in which the capacitors 
have impedance ZC = 1/iωC, inductors ZL = iωL, and 
resistors ZR = R, with ω = 2πf being the frequency in 
rad/sec. The input impedance is thus � 

1 1 
�−1 

Z =ZCm + 
ZCT 

+ 
R + ZL 

1 
� 

1 
�−1 

= + iωCT + 
iωCm R + iωL 

1 + iωR(CT + Cm) − ω2L(CT + Cm) 
= . (D1)

iωCm(1 + iRωCT − ω2LCT ) 

2. Tune and Match Conditions 

The resonant frequency of this circuit is set by 

1 
ω2 = , (D2)∗ L(CT + Cm) 

and at this frequency, the input impedance is 

R(CT + Cm)
Z0 = . (D3)

Cm(1 + iRω∗CT − ω∗2LCT ) 

We would like this impedance to be 50 Ω, because that 
is the typical impedance expected by RF or microwave 
sources and the coaxial cable which carries in the signal. 
Setting Z0 = 50 we obtain: 

50 Ω (CT + Cm)
2 

= . (D4)
R Cm [Cm + iRω∗CT (CT + Cm)] 

To good approximation, the iRω∗CT (CT + Cm) term in 
the denominator may be neglected, giving � �2

50 Ω CT 
= 1 + . (D5)

R Cm 
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