
Quantum Information Processing with NMR

MIT Department of Physics

This experiment will let you perform a series of simple quantum computations on a two spin
system, demonstrating one and two quantum-bit quantum logic gates, and a circuit implementing
the Deutsch-Jozsa quantum algorithm. You will use NMR techniques to manipulate the state of a
proton and a carbon nucleus in a chloroform molecule, measuring ensemble nuclear magnetization.

You should know Matlab well to successfully do this experiment! Also, you are expected to have
already completed Junior Lab Experiment 12: Pulsed NMR, and know the basic physics of NMR. You
will measure the coupling constant describing the electron-mediated interaction between the proton

and carbon nuclear spins of chloroform; the classical input-output truth table for a controlled-not
gate; the numerical output of the Deutsch-Jozsa quantum algorithm; and optionally, the output and
oscillatory behavior of the Grover quantum search algorithm.

PREPARATORY QUESTIONS

1. The NMR spectrum of 13C chloroform has four
peaks: two proton peaks (centered around roughly
200 MHz in this experiment) and two carbon peaks
(around roughly 50 MHz). If the initial state of the
system is described by a diagonal density matrix,

ρ =

a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

 (1)

(where the states are 00, 01, 10, and 11, with proton
on left and carbon on right), then after a Rx(π/2)
readout pulse, the integrals of the two proton peaks
(in the proton frequency spectrum) are given by
a− c and b−d, and the integrals of the two carbon
peaks are given by a− b and c− d. The spectrum
is the Fourier transform of the free induction decay
signal, Eq. (15), for a given spin state ρ; see the
Appendix for a detailed derivation. (a) Sketch the
spectra you expect for the four cases when only
one of a, b, c, and d is nonzero. (b) What peak
integrals do you expect for ρ = ρtherm, the thermal
state of Eq. (19)? (c) What are the spectra if ρ is
a cnot gate applied to the thermal state, that is
ρ = UcnρthermU

†
cn? How about the near-cnot?

2. Explicitly compute

U = exp
[
i(nxσx + nyσy + nzσz)

]
(2)

and show this gives

U = cos(|n|) + i
nxσx + nyσy + nzσz

|n|
sin(|n|). (3)

3. Give a sequence of pulses to implement a proper
controlled-not which has matrix elements of only
one and zero. That is,

Ucn =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (4)

up to an irrelevant overall phase. You may
find it helpful to start with the near controlled-
not operation of Eq. (10). You should need
no more than four additional rotations about
x̂ and ŷ axes, or just two rotations about
the ẑ axis, to transform the near-cnot to a
real cnot. The Matlab script qipgates.m in
/afs/athena.mit.edu/course/8/8.13/matlab/qip/
is very helpful for this problem. This file is also
reproduced in an Appendix at the end of this lab
manual.

4. Consider the four possible (classical) functions
which have one bit as input and one bit as output.

• State the function fk(x) for each of these func-
tions (k from 1 to 4). Sketch a classical cir-
cuit which implements each of these functions.
Sketch a quantum circuit which implements
each of these functions using rotation opera-
tions and CNOT gates (the quantum circuit
will consist of two qubits, an input ‘x’ and an
output ‘y’, such that ‘x’ remains unchanged
by the circuit and ‘y’ encodes the function
fk(x) ⊕ y). Particularly useful references are
[1, 2].

• State the four pulse sequences which im-
plement the above quantum circuits (denote
them as Uf1, Uf2, Uf3, and Uf4) comprised of
rotations about x̂ and ŷ axes, and delay times
τ during which free two-qubit evolution occurs
according to Eq. (8).

• Compute the 4 × 4 unitary matrices Uk cor-
responding to the four pulse sequences Uk =
Rȳ2Ry1UfkRy2Rȳ1, for k from 1 to 4.

5. Compute the one-sided (integral from t = 0 to
t = +∞) Fourier transform of ei(ω0t+φ)e−t/T2

and relate your result to the parameters for the
Lorentzian in Eq. (16).

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp 2

SUGGESTED SCHEDULE

Day 1: Measure ωP , ωC , J , and pulse widths for 90 de-
gree rotations; estimate T1 and T2.

Day 2: Implement near controlled-not gate and full
controlled-not gate on the thermal spectrum, and
characterize its peak amplitudes.

Day 3: Implement the Deutsch-Jozsa algorithm, and
characterize sources of error.

Day 4: (if you have time) Implement the Grover algo-
rithm.

I. INTRODUCTION

Information always has a physical representation, and
physical systems are governed by laws of Nature. The
earliest mechanical computers represented their state us-
ing the positions of gears and cogs; they computed using
Newton’s laws of classical mechanics. Modern electronic
computers store information using the presence or ab-
sence of electronic charge on small semiconductor capac-
itors, and use laws of electricity and magnetism to process
information. Quantum computers represent information
using states of quantum systems, and perform computa-
tion by exploiting the laws of quantum physics. Since
quantum mechanics allows for transformations that are
impossible classically, new feats of computation are en-
abled which can speed the solution of some interesting
mathematical problems; this potential was first foreseen
by Richard Feynman, who pointed out in 1982 [3] that
quantum systems are difficult to simulate using classical
computers. This is because the amount of information
necessary to completely describe a quantum state grows
exponentially in its size; the wavefunction of an n spin-
1/2 particle system is given by about 4n real numbers.
Feynman posed the question: how much computational
power could be obtained by using the dynamics of quan-
tum systems to solve classical problems?

Many early questions had to be answered before the
potential for quantum information processing was to be-
come evident. First was the thermodynamic cost of com-
putation: for example, von Neumann believed it was nec-
essary to dissipate approximately kBT of energy per el-
ementary computational step [4]. However, it was then
realized by Landauer [5] that energy dissipation is neces-
sary only to erase information; in a closed (frictionless)
computational system, there is no energy cost to com-
putation! In part, von Neumann’s belief came from the
fact that gates such as the logical and are irreversible;
Bennett [6] then showed that all Boolean circuits can
be made reversible with overhead (number of additional
gates) only polynomial in the size of the original circuit.
A whole field of reversible computation blossomed from
this [7].

These insights brought quantum dynamics into com-
patibility with the idea of computation, since it was
well known that closed quantum systems evolve unitar-
ily, and the microscopic evolution of physical systems is
reversible. Benioff [8] began by expressing classical com-
putation as the dynamical behavior of a quantum sys-
tem, and Feynman introduced various elementary quan-
tum gates [9], but it was not until Deutsch’s article in
1989 [10] that a problem was found which could provably
be solved faster than is possible with a classical computer.
Essentially, this was the computation of f(0) + f(1) in
one evaluation of a function f which has a domain and
range of one bit: {0, 1}.

I.1. Factoring and Search

Deutsch’s result languished in relative obscurity until
Peter Shor surprised the world in 1994, with his discovery
of a quantum algorithm for factoring integers [11]. This
result extended a quantum period-finding algorithm by
Simon [12] and utilized a number-theoretic result to turn
a period of a certain function into factors of L-digit in-
tegers, using O(L3) quantum gates, in contrast to the

O(2L
1/3

) operations required by the best known classical
algorithm. Subsequently, in 1996 Grover [13] discovered
a quantum search algorithm which can be used to speed
up a wide range of problems from requiring O(N) steps

to only O(
√
N). (The time and size notation used here is

known as “Big-O notation”, which you can learn about
by looking it up on the internet or asking a Course VI
friend.)

I.2. Implementation

Large-scale implementation of these algorithms re-
mains a significant experimental challenge, but their ba-
sic working principles are now readily demonstrated using
nuclear magnetic resonance (NMR) techniques applied to
small multi-spin molecules. This methodology [1, 2] in-
volves some new averaging techniques to extract a signal
as if the spins were initialized to a zero-temperature state.
(In reality, they are in a high-temperature Boltzmann dis-
tribution.) However, implementation of single quantum-
bit (qubit) and multiple-qubit logic gates is straight-
forward, as is measurement of the final result. NMR
has been successfully used to demonstrate the Deutsch-
Jozsa, Grover, and Shor quantum algorithms, as well as
quantum error correction and simulation of quantum sys-
tems [14, 15].

In this lab, you will use a simple two-spin system com-
prised of the hydrogen (proton) and carbon nuclei of 13C
labeled chloroform (Fig. 1) to implement a series of quan-
tum logic gates, beginning with single qubit rotation op-
erations, and a simple quantum addition gate. You will
then use these building blocks to implement the Deutsch-
Jozsa algorithm. Optionally, you may also implement

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp 3

FIG. 1. Chloroform molecule.

Grover’s quantum search algorithm and observe its ex-
pected oscillatory behavior.

II. THEORY

Digital electronic computers are constructed from ele-
mentary building blocks known as logic gates, and the
quantum computers we study here are similarly con-
structed from quantum logic gates. These are noth-
ing more than unitary transforms which act on finite-
dimensional Hilbert spaces. The physical systems are
comprised of several quantum bits, two-level quantum
systems, whose states are acted upon by a sequence of
unitary transforms describing a quantum circuit. Finally,
a projective measurement collapses the state, giving a
probabilistic sequence of classical bits as output. The
meaning of this output is dependent on the quantum al-
gorithm which is instantiated by the circuit. These algo-
rithms solve certain problems faster than is known to be
possible with classical algorithms because quantum logic
gates provide additional transforms that are impossible
classically.

We quickly tour this theoretical arena beginning with
a description of the basic quantum logic gates, how they
are composed to form circuits, the implementation of two
basic quantum algorithms, and finally how the circuits
are physically implemented with NMR. More information
can be found in the literature [16].

Note that while the theoretical discussion here is most
conveniently expressed in terms of ω with units of radians
per second, real frequencies in the apparatus ν = ω/(2π)
are in hertz, cycles per second. Remember your factors
of 2π and conversions between ~ and h!

II.1. Qubits

To help you keep track of which qubit is which, we pro-
vide here the naming convention used in this experiment.
The system we work with is a two-qubit system and we
write the state of the system as the ket |H,C〉. That
means that the left qubit refers to the hydrogen nucleus
and the right qubit refers to carbon nucleus. We also

sometimes refer to the hydrogen qubit as qubit number
2 and the carbon qubit as qubit number 1.

A single qubit is a vector |ψ1〉 = c0|0〉+ c1|1〉 parame-
terized by two complex numbers satisfying |c0|2 + |c1|2 =
1. Operations on a qubit must preserve this norm, and
thus are described by 2 × 2 unitary matrices. Similarly,
two-qubit states are described by four-dimensional vec-
tors |ψ2〉 = c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉, sat-
isfying

∑
k |ck|2 = 1, and transforms are 4×4 unitary

matrices. In vector form, |ψ1〉 =

[
c0
c1

]
, and similarly

|ψ2〉 = [c00, c01, c10, c11]T .
When measured in the computational basis of |0〉 and
|1〉, the single qubit state |ψ1〉 produces 0 and 1 with
probability |c0|2 and |c1|2, respectively. The two-qubit
state behaves similarly. Note that the overall phase of a
wavefunction is unmeasurable and has no physical mean-
ing, so eiθ|ψ1〉 is indistinguishable from |ψ1〉 for any θ.
Thus, a single qubit is often visualized as a unit vector
on a sphere. (See Appendix B on Bloch sphere represen-
tations.)

II.2. One and two qubit gates and circuits

II.2.1. Single qubit gates

The Pauli matrices

σx ≡
[

0 1
1 0

]
σy ≡

[
0 −i
i 0

]
σz ≡

[
1 0
0 −1

]
(5)

are important as generators of unitary transforms, and
are a good starting point for describing how a physical
system performs quantum computation is to write down
its Hamiltonian in terms of such matrices. A system with
Hamiltonian H evolves under the Schrödinger equation
i~∂t|ψ〉 = H|ψ〉, which has the solution |ψ(t)〉 = U |ψ(t =
0)〉, where U = e−iHt/~ is unitary.

Quantum logic gates are realized by turning on and off
terms in a Hamiltonian via an external control mecha-
nism. For example, a single qubit may be realized by a
two-level spin sitting in a static ẑ-oriented magnetic field,
described by the Hamiltonian

H1 = ~ω1σz +
~Px1(t)σx

2
+

~Py1(t)σy
2

, (6)

where Px1(t) and Px2(t) are classical variables (c-
numbers) resulting from externally controlled magnetic
fields about the x̂ and ŷ-axes. (See Appendix C for more
on magnetic resonance.) In this experiment, typical val-
ues of ω1 will be around 109 radians/second, while P will
be in a range around 105 radians/second.

Let us assume for now we can neglect the ~ω1 term;
this is done by moving into the rotating frame of the
spin. If Px1 is turned on while Py1 = 0, then the spin

state transforms under U = e−iPx1tσx/2. For Px1t = π,
this gives U = e−iπσx/2 = iσx. It is easy to see this

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp 4

transform, known as a π rotation about x̂, is analogous
to a classical not gate, since σx|ψ1〉 = c1|0〉+ c0|1〉; the
probability amplitudes of 0 and 1 are reversed. We de-
note this transform as Rx(π). You will implement such
not gates to prepare inputs from the initial state |00〉.

What happens when Px1t = π/2? This is called a π/2
rotation, and results in the transform

Rx(π/2) =
1√
2

[
1 −i
−i 1

]
(7)

which has no classical analogue! It might be thought of
as a “square-root” of not, since performing this twice
gives Rx(π/2)Rx(π/2) = Rx(π), which we identified as
a not. Similar rotations occur when Py1 is nonzero. In
general, we can perform rotations Rx(θ) and Ry(θ) for
any value of θ, by controlling Px1 and Py1 appropriately.
Furthermore, by performing appropriate x̂ and ŷ rota-
tions sequentially, we can construct rotations about the
ẑ-axis, Rz(θ).

II.2.2. Two qubit gates

Now consider a two-qubit system described by the
Hamiltonian

H =
~π
2
Jσ1

zσ
2
z +

~Px1(t)

2
σ1
x +

~Py1(t)

2
σ1
y

+
~Px2(t)

2
σ2
x +

~Py2(t)

2
σ2
y, (8)

where the superscripts describe which qubit the operators
act upon, and J is a fixed coupling constant describing
a first-order spin-spin coupling. In this experiment, J is
about 215 Hz. This kind of coupling is common in liquid-
state NMR systems such as the one we will be working
with. As before, the P (t) terms describe classical controls
used to effect single-qubit operations. We assume that
each of the P (t) can be turned on separately, and with
a magnitude such that |P (t)| � J , so that while any
single qubit operation is active, the J-coupling can be
neglected, to very good approximation. This will be the
case in our experiment, and the above Hamiltonian will
describe our system excellently.

How are single qubit operations on a two-qubit system
described mathematically? For example, Rx1 denotes a
π/2 rotation about x̂ on qubit 1. Note that in this lab
manual, we sometimes write Rx as short for Rx(π/2).
This implies that we wish to do nothing, i.e. the iden-
tity operation, to qubit 2. To express “do nothing to
the second qubit and a Rx to the first qubit” we write
Rx1 = I ⊗Rx1, where ⊗ is the tensor product (or some-
times, Kronecker product) operator. More about this,
and the mathematics used for composite quantum sys-
tems, is described in Appendix G. With Matlab, you
can compute the matrix Rx1 = kron(I,Rx). Similarly,
σ1
zσ

2
z is the matrix σz ⊗ σz.

Consider the sequence of operations Uncn = Rx1–τ–
Rȳ1, where τ stands for a free evolution period (with
all P (t) = 0) of time 1/(2J), and Rx1 and Ry1 are
π/2 rotations acting on the first qubit. (Note that
Rȳ1(π/2) = Ry1(−π/2) is simply a rotation about the
−ŷ axis.) Note that this sequence is written with time
going left to right, but when multiplying unitary trans-
forms, the first operator goes on the right :

Uncn = Rȳ1τRx1 (9)

Using a Dirac ket labeling of |c2c1〉 (that is, the first qubit
has its label on the right), and writing the matrix rows
and columns in the natural numerical order of 00, 01, 10,
11 (left to right, and top to bottom), we obtain

Uncn =
[
I ⊗Rȳ

]
e−i(π/4)σz⊗σz

[
I ⊗Rx

]

=
1√
2

 1 1 0 0
−1 1 0 0
0 0 1 1
0 0 −1 1

 1√
−i

−i 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −i

× 1√
2

 1 −i 0 0
−i 1 0 0
0 0 1 −i
0 0 −i 1

=
1√
−i

−i 0 0 0
0 1 0 0
0 0 0 −i
0 0 −1 0

 . (10)

This two-qubit gate is interesting: acting on each of
the four computational basis input states |00〉, |01〉,
|10〉, |11〉, we obtain U |00〉 = −i|00〉, U |01〉 = |01〉,
U |10〉 = −|11〉, U |11〉 = −i|10〉. If we denote the in-
put as |xy〉, we find that the output from measuring
U |xy〉 gives the classical bits x′ and y′ such that x′ = x
and y′ = x ⊕ y, where ⊕ is binary addition modulo two
(0 ⊕ 0 = 0, 0 ⊕ 1 = 1 ⊕ 0 = 1, 1 ⊕ 1 = 0). This quan-
tum gate is thus an analog of a classical xor gate. It
is possible to insert further rotations about the ẑ-axes
of the two qubits in order to make all the matrix ele-
ments equal to 1; the resulting operation is known as a
controlled-not (or cnot) gate, and the one given above,
with non-ideal phases, is a “near” cnot. You will im-
plement the quantum controlled-not gate and confirm its
classical input-output truth table.

In drawing these circuits graphically, let the top line
be qubit 1, and the bottom qubit 2, such that an ⊕ on
the bottom line represents R2

x2, that is a π pulse on qubit
2. The vertical line connecting a solid dot with an ⊕ is
a symbol for a cnot gate.

II.3. Quantum algorithm: Deutsch-Jozsa

We are now ready to explore the first non-trivial quan-
tum algorithm ever invented, the Deutsch-Jozsa algo-
rithm, and solve the following problem: given an un-
known function f(x) which accepts one bit as input and

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp 5

produces one bit as output, what is f(0) ⊕ f(1)? With
this result, we can determine whether f(x) is one of two
types: a constant function, where f(0) = f(1), or a bal-
anced function, where f(0) 6= f(1). Equivalently: given
a coin, is it a fake (both sides have heads or tails), or is
it fair (heads one one side, tails on the other)? Clearly,
any classical computer must evaluate the function (look
at both sides of the coin) at least twice to answer this
question. On the other hand, a quantum computer need
only evaluate f once!

Here is how it works. We use two qubits, one to store
the argument x, and the other to store the value of f(x).
In our basis this looks like |x f(x)〉. The two qubits are
initialized in the state |ψ0〉 = |00〉. We then perform
U1 = Ry2(π/2)Rȳ1(π/2) to the state, obtaining

|ψ1〉 =U1|ψ0〉

=
[
Ry2(π/2)|0〉

]
⊗
[
Rȳ1(π/2)|0〉

]
=

[
|0〉+ |1〉√

2

]
⊗
[
|0〉 − |1〉√

2

]
=

1

2

[
|00〉 − |01〉+ |10〉 − |11〉

]
. (11)

Now a unitary transform Uf implementing f is applied;
this is defined to give Uf |xy〉 = |x〉|f(x)⊕ y〉. (There are
other ways f could be implemented in such a reversible,
unitary manner, but they are all equivalent for our pur-
poses.) The result is the state |ψ2〉,
|ψ2〉 = Uf |ψ1〉

=
1

2

[
|0〉|f(0)〉 − |0〉|f(0)⊕ 1〉

+|1〉|f(1)〉 − |1〉|f(1)⊕ 1〉
]

=
1

2

[
(−1)f(0)|0〉(|0〉 − |1〉)

+(−1)f(1)|1〉(|0〉 − |1〉)
]

=

[
(−1)f(0)|0〉+ (−1)f(1)|1〉√

2

]
⊗
[
|0〉 − |1〉√

2

]
. (12)

The simplification from the second to third lines above
occurs because 0 ⊕ 1 = 1, but 1 ⊕ 1 = 0. Note that
the state of the first qubit (the one on the right) re-
mains unchanged. We now apply two final single-qubit
rotations, U2 = Rȳ2(π/2)Ry1(π/2), giving |ψ3〉. Recall-

ing that Rȳ(π/2)|0〉 = (|0〉 − |1〉)/
√

2, and Rȳ(π/2)|1〉 =

(|0〉+ |1〉)/
√

2,

|ψ3〉 = U2|ψ2〉

=

[
Rȳ2(π/2)

(−1)f(0)|0〉+ (−1)f(1)|1〉√
2

]
⊗ |0〉

=
1

2

[
(−1)f(0)(|0〉 − |1〉) + (−1)f(1)(|0〉+ |1〉)

]
⊗ |0〉

=
1

2

[
((−1)f(0) + (−1)f(1))|0〉

+ (−(−1)f(0) + (−1)f(1))|1〉
]
⊗ |0〉. (13)

Note how the first qubit (the one on the right) is left in
its original state, |0〉. As for the second qubit (the one on
the left): by inspection, we see that if f(0) = f(1), then
f(0) ⊕ f(1) = 0 and measurement of the second qubit
gives 0; otherwise, f(0)⊕f(1) = 1, and the measurement
gives 1. This is the desired result.

Summarizing, the two-qubit Deutsch-Jozsa algorithm
can be expressed as the sequence of operations

Rȳ2Ry1UfkRy2Rȳ1 (14)

acting on the initial state |00〉, where Ufk implements
the kth of the four possible functions fk(x), and each of
the Rs denotes a π/2 rotation. These functions can be
described by the truth table:

x f1(x) f2(x) f3(x) f4(x)

0 0 1 0 1

1 0 1 1 0

.

In one evaluation of f , the quantum algorithm distin-
guishes between the constant functions, k = {1, 2}, and
the balanced functions, k = {3, 4}. In contrast, classi-
cally, this would require two evaluations.

The action of this quantum circuit may be understood
as having interfered two computational pathways to ob-
tain the final answer. Indeed, the rotation operations are
like beamsplitters, and the structure of the algorithm is
that of a complex, four-path interferometer. A general-
ization of this structure is used in the quantum factoring
algorithm. You will construct quantum circuits for the
four possible functions Uf , implement the Deutsch-Jozsa
algorithm, and observe the measurement result.

II.4. Quantum algorithm: Grover (optional)

In this lab, you may optionally implement the Grover
quantum search algorithm on two qubits. The theory
and implementation procedure for this optional part are
described in Appendix E.

II.5. Implementation with NMR

This experiment utilizes an NMR apparatus which al-
lows complex pulse sequences to be applied simultane-
ously at two different frequencies, to control and observe
the proton and carbon spins inside molecules of 13CHCl3.
You are expected to have already completed Junior Lab
Experiment 12: Pulsed NMR, and know the basic physics
of NMR. Below is some additional information specific to
this quantum computation experiment.

The principal output of an experiment is the free induc-
tion decay (FID) signal V (t) for spin k, mathematically
given as

V (t) = −V0tr
[
e−iHt/~ρeiHt/~(iσkx + σky)

]
, (15)

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp 6

where σkx and σky operate only on the kth spin, and V0

is a constant factor dependent on coil geometry, qual-
ity factor, and maximum magnetic flux from the sample
volume. This signal originates from the pickup coils de-
tecting the magnetization of the sample in the x̂-ŷ plane.
In the laboratory frame, this signal will oscillate at a fre-
quency equal to the precession frequency ω0 of the nuclei;
however, V (t) is usually mixed down with an oscillator
locked at ω0, then Fourier transformed.

Notice how the voltage is complex valued; this is
achieved using a superheterodyne receiver (much like
that employed in the 21-cm Radio Astrophysics MIT Ju-
nior Lab experiment), and allows one to differentiate be-
tween a spin circulating clockwise or counterclockwise.
The voltage signal also decays exponentially, as e−t/T2 ,
so that the Fourier transform signal of each spin reso-
nance line is a complex-valued Lorentzian g(ω),

g(ω) =
αΓ

i(ω − ω0) + Γ
, (16)

where ω0 is the center frequency of the line, α = |α|ei argα

is the (complex-valued) height of the peak, and 2Γ is the
full-width at half-max. You will read out |0〉 and |1〉
states (which are along the ẑ axes) by tipping them into
the x̂− ŷ plane, such that they are either |+ y〉 or | − y〉
states. By convention, the local oscillator reference phase
is set such that these states correspond to peaks which
are positive, with argα = 0, or negative, with argα = π.

FIG. 2. Semiclassical explanation for spin-spin coupling,
showing two spins in a strong magnetic field B0. Each spin
produces its own local magnetic field, which is seen by its
neighbor. When spin A is spin-up, its field subtracts from
that seen by B, thus causing it to precess slower. When A is
spin-down, its field adds, causing B to precess faster. A is a
quantum spin which only has two states.

For a single (uncoupled) spin, the FID has only a single
frequency. Two coupled spins will produce four frequen-
cies; these occur as two pairs, in this experiment centered
around the proton frequency (≈ 200 MHz) and the car-
bon frequency (≈ 50 MHz). The reason each spin’s line
is split into two is because of the coupling; as schemati-
cally shown in Fig. 2, we can think of what happens as
one spin seeing the magnetic field of the other.

In chloroform, we observe that each line is split by
J ≈ 215 Hz, due to a Fermi-contact interaction mediated

by electrons in the chemical bond between the carbon
and proton. The spectra will appear much like the data
shown in Fig. 3.

FIG. 3. Proton (left) and carbon (right) spectra of 13CHCl3,
showing ≈ 215 Hz J coupling.

We now need to discuss the input state preparation
problem. (This discussion requires knowledge of basic
density matrices and statistical mechanics; it is optional
— you can do the experiment without fully understanding
it — but essential to how the experiment works.) NMR
systems would be ideal for quantum computation if not
for one problem which particularly concerns this exper-
iment: NMR is typically applied to physical systems in
equilibrium at room temperature, where the spin energy
~ω is much less than kBT . This means that the initial
state of the spins is nearly completely random. Tradi-
tional quantum computation requires the system be pre-
pared in a pure state (i.e. |00〉, as describe above); how
can quantum computation be performed with a system
which is in a high entropy mixed state?

Mathematically, we may write the initial state as
the thermal equilibrium state (note our sign convention
here),

ρ = e+βH/Z, (17)

where β = 1/kBT , and Z = tre+βH is the usual partition
function normalization, which ensures that tr(ρ) = 1.
Since β~ω ≈ 10−4 at modest fields for typical nuclei at
room temperature, the high temperature approximation

ρ ≈ 2−n
[
1 + βH

]
(18)

is appropriate, for a system of n spins. For the two-spin
chloroform molecule, the initial state is approximately

ρ ≈ I

4
+ 10−4

5 0 0 0

0 3 0 0

0 0 −3 0

0 0 0 −5

 , (19)

since ωH ≈ 4ωC and J � ωC , by virtue of the approxi-
mate factor of four difference in the gyromagnetic factor
for the proton compared with the carbon.

Now that the input state preparation problem is under-
stood, we introduction the initialization solution: tem-
poral labeling. This experiment uses the following tech-
nique to extract a signal from only the |00〉 initial state;

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp 7

it is based on two important facts: quantum operations
are linear, and the observables measured in NMR are
traceless. Suppose a two spin system starts out with the
density matrix

ρ1 =

a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

 , (20)

where a, b, c, and d are arbitrary positive numbers satis-
fying a+b+c+d = 1. We can use a circuit P constructed
from controlled-not gates to obtain a state with the per-
muted populations

ρ2 = Pρ1P
† =

a 0 0 0

0 c 0 0

0 0 d 0

0 0 0 b

 , (21)

and similarly,

ρ3 = P †ρ1P =

a 0 0 0

0 d 0 0

0 0 b 0

0 0 0 c

 . (22)

A unitary quantum computation U is applied to each
of these states, to obtain (in three separate experiments,
which may be performed at different times) Ck = UρkU

†.
By linearity,∑

k=1,2,3

Ck =
∑
k

UρkU
†

= U

[∑
k

ρk

]
U†

= (4a− 1)U

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

U†

+ (1− a)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (23)

In NMR, observables M (such as Pauli σx and σy) for
which tr(M) = 0 are the only ones ever measured; thus,

tr

(∑
k

CkM

)
=
∑
k

tr (CkM)

= (4a− 1)tr

U

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

U†M

= (4a− 1)tr
(
U |00〉〈00|U†

)
. (24)

We find that the sum of the measured signals from the
three experiments gives us a result which is proportional
to what we would have obtained had the original system
been prepared in a pure state |00〉〈00| instead of in the
arbitrary state of Eq. (20).

States which are of the form ρ = 2−n(1 − ε)I +
εU |00 . . . 0〉〈00 . . . 0|U† (where U is any unitary opera-
tor), are called ‘effective pure states’, or ‘pseudopure’
states [14]. There are many strategies for preparing such
states, and in general they all incur some cost. Effective
pure states make it possible to observe zero temperature
dynamics from a system which equilibrates to a high tem-
perature state, as long as the coupling of the system to its
high temperature environment is sufficiently small. This
is the way it is used in NMR quantum computation.

III. APPARATUS

The experimental apparatus consists of a specially pre-
pared chemical sample containing 13CHCl3, a NMR spec-
trometer, and a control computer. A schematic of the
Bruker acquisition system is shown in Fig. 4.

You will be using a special Bruker Avance 200 NMR
spectrometer for this experiment. It is primarily con-
trolled by a Linux workstation running Bruker’s xwin-
nmr; you will interact with the spectrometer through an
Athena workstation next to it, which speaks to xwin-
nmr over a local network, using Matlab as the user
interface. Your main task is to design and implement
sequences of pulses (a “pulse program”) for the quantum
circuits and algorithms described in the theory section.
You will acquire data, compare with theoretical expec-
tations, and explain likely sources of error and how they
could be dealt with.

FIG. 4. An overview of the Bruker acquisition system.

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp 8

III.1. Sample

The 7% by weight 13CHCl3 sample is prepared in a
flame-sealed 5mm glass tube (Fig. 5) and mounted in
a special “spinner” which allows the tube to be rapidly
spun to average away transverse inhomogeneities in the
B0 axial field. The solvent is d6-acetone, that is, acetone
with all six hydrogen atoms replaced with deuterium; the
deuterium in the solvent is used to produce a lock signal
which is picked up by the NMR probe and used in an
active feedback loop to stabilize the axial magnetic field
from drift.

FIG. 5. Picture of a typical NMR sample in a spinner.

III.2. NMR spectrometer hardware

The spectrometer is constructed from radiofrequency
(RF) electronics and a large superconducting magnet
with a proton NMR frequency at about 200 MHz, within
the bore of which is held the sample in a glass tube, as
shown in Fig. 6. There, the static ẑ-oriented magnetic
field B0 is carefully trimmed by the Junior Lab staff to
be uniform over approximately 1 cm3 to better than one
part in 109. Orthogonal saddle coils lying in the trans-
verse plane allow small, oscillating magnetic fields to be
applied along the x̂ and ŷ directions. These fields can
be rapidly pulsed on and off to manipulate nuclear spin
states. The same coils are also part of tuned circuits
which are used to pick up the RF signal generated by
the precessing nuclei, much like how a spinning magnet
inductively generates an alternating current in a nearby
coil.

A typical experiment begins with a long waiting period
in which the nuclei are allowed to thermalize to equilib-
rium; this is on the order of 60 seconds for our sample.
Under control of the computer, RF pulses are then ap-
plied to effect the desired transformation on the state
of the nuclei. The high power pulse amplifiers are then
quickly switched off and a sensitive pre-amplifier is en-
abled, to measure the FID, which is then Fourier trans-
formed to obtain a frequency spectrum with peaks whose
areas are functions of the spin states.

There are many important practical issues which lead
to observable imperfections. For example, spatial inho-
mogeneities in the static magnetic field cause nuclei in

FIG. 6. Schematic diagram of an NMR apparatus.

different parts of the fields to precess at different fre-
quencies. This broadens lines in the spectrum. An even
more challenging problem is the homogeneity of the RF
field, which is generated by a coil which must be orthog-
onal to the B0 magnet; this geometric constraint and the
requirement to simultaneously maintain high B0 homo-
geneity usually forces the RF field to be inhomogeneous
and generated by a small coil, leading to imperfect con-
trol of the nuclear system. Also, pulse timing and stabil-
ity of power, phase, and frequency are important issues.

III.3. Control system and software environment

Two Linux computers are used in this experiment. The
QIP workstation is the main controller for the Bruker
spectrometer; it will be setup in a server configuration
for you, and you should not need to interact with it un-
der normal operation. The main workstation used in this
experiment is an Athena Linux terminal. The Athena
computer communicates via a Matlab interface with the
other computer over a local network to control the spec-
trometer and perform experiments. The main Matlab
functions you will use are

• NMRCalib(pw, phref, d1) applies one pulse of
width pw (in microseconds) to the proton and car-
bon channels, for calibration of the center frequen-
cies, the J coupling, the phase references, and the
90 degree pulse widths of the proton and carbon. A
Matlab structure containing the proton and car-
bon spectra, as specified below, is returned. The
pulse performs a Rx rotation. d1 is the delay time
in seconds to wait before starting the sequence.

• NMRRunPulseProg(pw90, phref, pulses,
phases, delays, tavgflag, nucflag, d1)
runs a pulse program, as specified by pulses,
phases, and delays using the 90 degree pulse
width specified in microseconds by pw90, returning
a structure containing the proton and carbon
spectra, phased according to phref, as described

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp 9

below. If tavgflag is 1 (that is the default, if
this parameter is left out), then the averaging
procedure for temporal labeling is performed;
otherwise, no averaging is performed and just a
single pair of spectra (one proton, one carbon) are
taken. nucflag specifies whether both proton and
carbon spectra are acquired (the default case), or
just one. d1 is the delay time in seconds to wait
before starting the sequence.

You can type help NMRCalib or help
NMRRunPulseProg at the Matlab prompt to get
online documentation for the input and output of these
two functions. Some of the information is reproduced
here. The function arguments follow the following form:

pw: pulse width for NMRCalib in microseconds

pw90: 90 degree pulse width array (proton, carbon) in
microseconds

d1: delay time to wait in seconds before pulse sequence;
the default value is 50 seconds, which should be
long enough for the sample to re-equilibrate be-
tween excitations.

phref: vector of two scalar elements [φpφc] specifying the
proton and carbon phase references, in units of de-
grees. The spectra are multiplied by exp(iφp) and
exp(iφc) by the program.

pulses: 2×Np (two rows and Np columns) matrix spec-
ifying what pulse widths to apply for proton and
carbon. Np is the total number of pulses. The first
row gives the proton pulse widths, and the second
row gives the carbon pulse widths, in units of pw90.
For example, [1 0; 0 1] describes a sequence of two
90-degree pulses, the first on the proton, and the
second on the carbon.

phases: 2×Np matrix specifying the phases of the pro-
ton and carbon pulses. The first row gives the pro-
ton phases, and the second row the carbon phases.
Phases are 0, 1, 2, 3 for rotations about the x̂, ŷ,
−x̂, and −ŷ axes, respectively.

delays: 1×Np vector specifying the delays, in millisec-
onds, to perform after each pulse. The first element
in this vector specifies the delay after the first pulse,
and so forth. Note that the delays vector, the pulses
matrix, and the phases matrix must all have the
same number of columns.

nucflag: 0 is acquire both spectra (the default), 1 is pro-
ton only, 2 is carbon only. The spect structure
that is returned will have only the corresponding
elements set.

tavgflag: 1 (the default) is to perform temporal label-
ing, 0 is no temporal labeling.

The proton and carbon spectra must be taken sequen-
tially, one at a time, because the machine only has a
single receiver. And if the averaging procedure for tem-
poral labeling is performed, then this requires three ex-
periments (with two spectra each) to be taken, so you
have to be patient while the data is taken.

Each of these procedures returns (and saves) a data
structure containing the proton and carbon spectra.
Specifically, the returned or saved structure spect has
fields (you can get this information online by typing help
NMRPulseProg at the Matlab prompt):

spect.hfreq: proton frequency scale data in hertz, rel-
ative to spect.hsfo

spect.cfreq: carbon frequency scale data in hertz, rel-
ative to spect.csfo

spect.hspect: proton spectral data, phased according
to spect.hphase

spect.cspect: carbon spectral data, phased according
to spect.cphase

spect.cfid: carbon free induction decay data

spect.hfid: proton free induction decay data

spect.tacq: acquisition time in seconds

spect.hsfo: proton transmitter frequency in megahertz

spect.csfo: carbon transmitter frequency in megahertz

spect.dt: date-time marker (a string)

spect.hpeaks: integrals of proton peaks phased accord-
ing to hphase

spect.cpeaks: integrals of carbon peaks phased accord-
ing to cphase

spect.hphase: phase value for proton spectra in radians

spect.cphase: phase value for carbon spectra in radians

spect.pp: pulse program structure contain-
ing spect.pp.pulses, spect.pp.phases,
spect.pp.delays

spect.tavgflag: flag indicating if temporal labeling was
done (a binary value)

spect.nucflag: flag indicating if one or both of the pro-
ton and carbon spectra were acquired (value 0, 1,
or 2). Normally set to 1 or 2 but not 0.

spect.craw: cell array of the three carbon spectra added
together when temporal labeling is done

spect.hraw: cell array of the three proton spectra added
together when temporal labeling is done

These two procedures will also save the en-
tire spect structure in a date-time stamped
file (e.g., spect-07Mar02-182304.mat, i.e.
spect-<date>-<time>.mat). You can load in this
structure for later analysis.

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp 10

IV. MEASUREMENTS

IV.1. Overview

A typical experiment will involve the following steps:

1. Measure phase references and J .

2. Measure the pulse widths required to implement
Rx(π/2) rotations on the proton and carbon spins.

3. Measure T1 and T2 of the sample.

4. Implement a controlled-not gate and measure its
input-output truth table.

5. Implement the Deutsch-Jozsa quantum algorithm
and test its four cases.

6. (optional) Implement the Grover algorithm, test its
four cases, and observe the predicted theoretical
oscillation.

IV.2. Apparatus setup

You will need an instructor or graduate TA to intro-
duce you to the spectrometer during the first lab session.
It is a very sensitive system and there are special safety
precautions so please request help before you begin! The
technical staff may also need to shim the magnetic field
to optimize its homogeneity.

Log in to the Athena workstation, and then:

• Start Matlab. Use either via a graphical interface
or the Athena prompt as ‘add matlab; matlab &’.

• If you are in the command line interface to Mat-
lab and want the graphical desktop, then type the
command ‘desktop’.

• Within Matlab, type
‘addpath /home/nmrqc/matlab’.

• Then, ‘NMRStartup’.

You should now have all the proper Junior Lab QIP
scripts in your path and can control the NMR ma-
chine. You may check that the network connection to
the spectrometer is up by running the script testnmrx.
If the connection is down, you will get the error mes-
sage “do nmr command failed”. In this case, you will
need to go to the Bruker console and run the command
netnmr2 inside xwin-nmr; a staff member can help with
this. Aborting commands while communicating over the
network may also require you to restart netnmr2.

IV.3. Measurement of phref, ωP , ωC , and J

Start by ensuring the chloroform sample is in the spec-
trometer, and taking a sample spectrum to make sure
things are working normally. Each time you begin, you
will want to quickly check your basic measurements (of
the proton and carbon frequencies, and 90 degree pulse
widths) again.

Run NMRCalib with pw=5, and phref=[0 0]. The out-
put is the structure spect. (Type help NMRCalib for
more.) Two plots will show up: one for carbon and one
for proton. Be sure to write down the filenames in which
your spectral data are saved as you take them.

The data you obtain at first will have complex-valued
peak integrals, because the phase reference of the receiver
is not set properly. (That is the role of phref.) By plot-
ting spect.hspect versus spect.hfreq, determine what
value of φ you need, such that eiφπ/180 × spect.hspect
is real-valued and appears as in Fig. 7. Do similarly for
the carbon using spect.cspect and spect.cfreq. Then
run NMRCalib again with these two phase values in phref,
and it will give you properly phased spectra. Note that
you do not need an absolutely perfect phase setting for
this experiment to work properly: having the imaginary
component be less than 10% of the real component is
acceptable.

For example, the Matlab commands

spect = NMRCalib(5,[10 34])
figure;
plot(real(spect.hfid));
figure;
plot(spect.hfreq,spect.hspect);

apply a 5 µs pulse to the proton, measure the pro-
ton and carbon spectra, and plot these in two figures.
The parameters 10 and 34 are used as the phase ref-
erence angles; they should be chosen (by you) such
that the spectra are real. The two plot commands
plot the proton FID and the proton spectra. You
can use plot(spect.hfreq,exp(i*x)*spect.hspect)
to change the phase by x radians.

You must be careful of the phase of the signals in this
experiment and be aware of how the phase is referenced.
Ideally, we wish a 90 degree pulse about x̂ to result in a
real-valued peak, i.e. a Lorentzian of the form in Eq. (16)
with argα = 0. Always be sure that a single Rx(π/2)
pulse indeed gives a spectrum with no net imaginary com-
ponent! From studying Eq. (16), you should note that
because of Γ being nonzero, you will always see some
imaginary spectral component, but the integrated area
of the peak will be zero. The phase tells us the rela-
tive phase of the |0〉 and |1〉 components of the proton
and carbon qubits; equivalently, this can be visualized as
their point along the equator of the Bloch sphere. The
qubits start along +ẑ, and then get tipped by a Rx(π/2)
onto −ŷ, and by convention we choose that to give us a
real valued peak. Thus, a Ry(π/2) pulse, which tips +ẑ

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp 11

onto +x̂ should give us a purely imaginary valued peak;
you may check that this is true using NMRRunPulseProg.

You should analyze and understand this calibration
data as described in Section V.1 before moving on to the
further measurements.

IV.4. Calibration of 90 degree pulse widths

Run NMRCalib with a set of different pulse widths to
determine the number of microseconds required for a π/2
pulse on the carbon and π/2 on the proton. Note that
they are different, not in the least because the two chan-
nels use different RF power amplifiers. (Why else might
they be different?) The best estimate comes from tak-
ing a regularly spaced set of pulse widths, and fitting
an exponentially damped sinusoid to the points given by
peak height versus pulse width (why does the sinusoid
exponentially decay?). On a first pass, do not spend too
much time getting your calibrations absolutely perfect; it
is important that you get through to finishing the lab.

For example, The Matlab commands

peaks = [];
pwtab = linspace(1,15,8);
for pw = pwtab
sd = NMRCalib(pw,[10 34]);
peaks = [peaks ; sd.hpeaks sd.cpeaks]

end
figure;
plot(pwtab,real(peaks(:,1)));
figure;
plot(pwtab,real(peaks(:,3)));

will measure the proton and carbon spectra for 8 differ-
ent peak widths from 1 to 15 microseconds, and plot the
real part of the left peak integrals as a function of pulse
width. The parameter [10 34] is a vector which spec-
ifies the phase references. (Be sure to replace this with
your own values!) Note that each signal acquisition takes
approximately 50 seconds (by default), so the script as
given above will take ≈ 8 ∗ 2 ∗ 50 seconds = 13 minutes.

You should complete the analysis of this calibration
data as described in Section V.2 before moving on to
further measurements.

IV.5. Measurement of T1 and T2

T1 is measured using a 180–∆t–90 “inversion-recovery”
pulse sequence, and fitting an exponential decay to
the resulting data of peak height versus ∆t. Use
NMRRunPulseProg for this; construct a pulse program
with appropriate pulse widths, phases, and delays to per-
form the experiment. Be aware that each FID acquisi-
tion takes 50 seconds or more, because the system must
re-equilibrate between excitations. Do not setup an exper-
iment that will take too long to complete. The purpose of
this part is to familiarize yourself with the system, and to

put a lower bound on T1 and T2 so that you can convince
yourself that the quantum information processing part of
the experiment should work.

For example, the Matlab commands

peaks = [];
dtab = linspace(1,8000,5);
pulses=[2 1;0 0]
phases=[0 0 ;0 0]
nucflag = 0
for delay = dtab
sd = NMRRunPulseProg([7.3 5.5],[10 34],

pulses,phases,[delay 0],0,nucflag);
peaks = [peaks ; sd.hpeaks]

end
figure;
plot(dtab,real(peaks(:,1)));

will perform an inversion recovery T1 measurement on
the proton, taking 5 data points with delays from 1 mil-
lisecond to 8 seconds. Note that the units of delay are
milliseconds. The parameter pulses specifies that the
first pulse should be a π pulse on the proton, followed by
a π/2 pulse on the proton. Then, phases specifies that
all the pulses are along +x̂. Note that [7.3 5.5] give
the π/2 pulse widths for proton and carbon, in this exam-
ple, and should be replaced with your actual measured
values; similarly for the phase reference values.

Measure enough data to calculate T1 for both the pro-
ton and carbon. Be warned that T1 is on the order of 1
to 30 seconds, and you must wait ≥ 5T1 between spec-
tra for the sample to re-equilibrate. Estimate T2 from
the line widths, obtained by fitting the Lorentzians and
comparing the Lorentzian form to the Fourier transform
of a decaying exponential. Why does the complex ampli-
tude of the Lorentzians vary as they do when you change
∆t, particularly on the time scale of 2 to 8 milliseconds?

IV.6. Characterization of cnot and its truth table

Write a pulse sequence for NMRRunPulseProg to im-
plement the “near”controlled-not gate (with strange
phases), Uncn = Rȳ1τRx1, where τ is a 1/2J delay, and
also your “real” controlled-not gate, Ucn.

1. Apply Uncn and a readout pulse (Rx(π/2)) to the
thermal state, and take both proton and carbon
spectra; there should be only one readout pulse and
it should correspond to the nucleus you are acquir-
ing data for. (What should these spectra look like?)

2. Setup single and two-pulse sequences to prepare all
four possible classical inputs (00, 01, 10, 11), using
temporal labeling to prepare the initial 00. Then
apply U and a readout pulse, to confirm the classi-
cal truth table of the cnot.

3. Repeat the two above steps for your own cnot
pulse sequence, Ucn.

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp 12

You will need to have a proper Ucn to proceed to the next
step of this lab!

For example, the Matlab commands

pulses=[0 0 1;1 1 0]
phases=[0 0 0;0 3 0]
delays=[1/2/J 0 0]
tavgflag = 0
nucflag = 1
sd = NMRRunPulseProg([7.3 5.5],[10 34],

pulses,phases,delays,tavgflag,nucflag);

applies a near-cnot gate with one readout pulse on the
proton.

The first row of pulses specifies that only one pulse
should be applied to the proton, and this is a π/2 pulse
in the third time interval. The second row of pulses
specifies that π/2 pulses are applied to the carbon, in
the first and second time intervals. The phases matrix
specifies that the proton pulse should be about x̂ (since
phases(1,3)=0), and the carbon pulses should be about
x̂ and −ŷ. The delays vector specifies that a delay of
1/2J (in milliseconds!) occurs after the first pulse is ap-
plied; this implements the τ free-evolution unitary op-
erator involved in the construction of the near-cnot of
Eq. (9).

To obtain a similar spectrum, but for the carbon, you
will need to set nucflag=2 and move the readout pulse
to the carbon. tavgflag=0 tells the machine not to do
temporal averaging, so that it applies the pulse sequence
to a thermal spectrum. To apply the pulse sequence to
the state |00〉, obtained by temporal averaging, simply set
tavgflag=1. To apply the sequence to other pure inputs,
such as |01〉, you will need to add additional pulses.

The analysis of this data is discussed in Section V.3.

IV.7. Implementation of Deutsch-Jozsa quantum
algorithm

The Deutsch-Jozsa algorithm has four possible cases,
corresponding to the four possible functions mapping one
bit to one bit. Let these be f1, f2, f3, and f4. In
Preparatory Question 4, you examined pulse sequences
to implement these functions. As a hint: Uf2 needs
just one pulse, Uf3 = Ucn, and Uf4 is a simple modi-
fication of Uf3. Put these together with the theoretical
discussion of Section II.3 to construct pulse sequences
implementing the full algorithm for four cases. Specifi-
cally, translate Eq. (14) into pulses. You should be able
to fit the sequences into at most eight pulses on each
spin. For example, for k = 1 the pulse sequence is simply
Rȳ2Ry1Ry2Rȳ1, since Uf1 is the identity operation.

Write pulse programs for all these four cases, adding a
readout pulse, and run NMRRunPulseProg to acquire the
data. It is helpful to translate your pulses into matrices
and confirm theoretically that their product gives the ex-
pected theoretical result, and matches your experimental
observations.

Be sure to set your phase reference phref properly (as
in the calibration steps) such that plotting the reference
thermal spectra gives you a positive set of peak param-
eters α. With the same phref, you should find that all
the output spectra from the Deutsch-Jozsa experiments
give real-valued peak integrals, if all your gates (and in
particular, your cnot gate) are correct.

You should obtain the same spectra for the k = 1 and
k = 2 cases, and a different spectrum for the k = 3 and
k = 4 cases. Verify that this is the case, and be sure you
understand why. Note that just as for the controlled-not
gate experiment, only one of the two (proton and carbon)
spectra are needed to fully distinguish the outputs of the
two-qubit Deutsch-Jozsa algorithm.

What sources of error contribute to getting non-ideal
spectra? Compute the theoretically expected spectra, and
propagate errors from all your measurements and calibra-
tions to obtain an estimate of how far you expect to be off
from the ideal. Determine if you are within one standard
deviation, and if not, determine why.

Further optional topics: Can you identify where the
quantum behavior of the spin system is uniquely required
for this algorithm to work? What choice of assignment
of qubits to spins did you use, and what happens if you
reverse this?

V. ANALYSIS

V.1. Analysis of initial setup

Plot the free induction decay data (spect.hfid
and spect.cfid) as functions of time (spect.tacq is
the total acquisition time for each FID); this is the
data that is Fourier transformed to give the spec-
tral data. Plot the absolute value of the spec-
tral data (spect.{hspect,cspect}) versus frequency
(spect.{hfreq,cfreq}), and note the four Lorentzian
lines. The RF frequency of the carrier has to be set to
exactly the center of the two split lines, for both the
proton and carbon (this is how one works in the rotating
frame). Carefully measure the splitting between the lines,
J , by fitting Lorentzians to the spectral data. J should
not change between experiments, and is not a function
of the magnetic field strength, but the proton and car-
bon frequencies may drift slightly from session to session,
and also depending on how well the sample is shimmed.
When fitting Lorentzians to the lines to obtain the best
center positions, refer back to Eq. (16).

The ideal thermal spectrum can be computed as the
Fourier transform of Eq. (15), using the thermal density
matrix of Eq. (19) as the initial state ρ. It is useful to
know that if the initial state is a diagonal density matrix
ρ = diag(a, b, c, d), then after a Rx(π/2) readout pulse,
the peak integrals for the proton peaks are a − c and
b − d, and the carbon peaks are a − b and c − d. For a
voltage scale reference of V0 = 1, the integrals of the two
peaks in the proton spectrum should be +8 and +8, while

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp 13

the carbon spectrum should have integrals +2 and +2,
as shown in Fig. 7. Write down the four peak integrals
from your real-valued spectra as your reference thermal
spectrum peak integral values and assign their values to
the theoretical ratios (+8 or +2).

FIG. 7. Thermal spectra for proton (left) and carbon (right):
stick figures with nominal peak integrals.

V.2. Analysis of pulse width calibration

Take the peak integrals from each of the pulse width
calibration experiments and plot them as a function of
the pulse widths. (You should compare the peak integrals
given by the program to what you get from Lorentzian
line fits.) Fit an exponentially decaying sinusoid to the
proton data and to the carbon data, and from this de-
termine the optimal 90 degree pulse widths for the two
nuclei. What sources of error contribute to your pulse

width calibrations?

V.3. Analysis of CNOT truth table

Write down the four peak integrals you obtain for the
near-cnot applied to the thermal spectrum. Referring
back to Preparatory Question 1, and the four reference
peak integrals you obtained in the first part of this exper-
iment, compare your peak integrals to make sure you have
the right ratios. That is, let PH1, PH2, PC1, PC2 be the
reference peak integrals, and P cnH1 etc. be the peak inte-
grals for the cnot applied to the thermal state. Compute
P cnH1/PH1, P cnH2/PH2, P cnC1/PC1, P cnC2/PC2, and compare
PH1/PC1 versus P cnH1/P

cn
C1. If you see the right peak in-

tegral ratios, then you have successfully implemented a
logic operation on two nuclear spins: Your first simple
quantum computation!

Be sure to estimate your errors. Where do they come
from? Are your results within a standard deviation of
the ideal theoretical prediction? Also verify that you are
able to create the 00, 01, 10, and 11 states by acquiring
corresponding spectra; note that a 0 is a positive real
peak, and a 1 is a negative real peak. How close is your
output to the theoretical ideal?

Show that for these inputs (the thermal state and the
computational basis states) the proton and carbon spec-
tra should be the same whether you implement the ideal
cnot, with all the proper phases, or the “near” cnot,
on the thermal state (or indeed, on any classical input
state).

If the spins are in a computational basis state (i.e. 00,
01, 10, or 11), then readout of the proton (or carbon)
spectrum alone actually gives full information about the
state; only one of the two spectra need be acquired. How
does one obtain the state from one spectrum, and why is
this possible?

[1] D. G. Cory, A. F. Fahmy, and T. F. Havel, Proc. Nat.
Acad. Sci. USA 94, 1634 (1997).

[2] N. Gershenfeld and I. L. Chuang, Science 275, 350
(1997).

[3] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
[4] H. Leff and R. Rex, Maxwell’s Demon: Entropy, Infor-

mation, Computing (Princeton University Press, Prince-
ton, NJ, 1990).

[5] R. Landauer, IBM J. Res. Dev. 5, 183 (1961).
[6] C. H. Bennett, IBM J. Res. Dev. 17, 525 (1973).
[7] E. Fredkin and T. Toffoli, Int. J. Theor. Phys. 21, 219

(1982).
[8] P. Benioff, J. Stat. Phys. 22, 563 (1980).
[9] R. P. Feynman, Optics News p. 11 (1985).

[10] D. Deutsch, Proc. R. Soc. London A 425, 73 (1989).
[11] P. W. Shor, in Proceedings, 35th Annual Symposium

on Foundations of Computer Science (IEEE Press, Los
Alamitos, CA, 1994), pp. 124–134.

[12] D. Simon, in Proceedings, 35th Annual Symposium on

Foundations of Computer Science (IEEE Press, Los
Alamitos, CA, 1994), pp. 116–123.

[13] L. K. Grover, in 28th ACM Symposium on Theory of
Computation (Association for Computing Machinery,
New York, 1996), p. 212.

[14] D. Cory, R. Laflamme, E. Knill, L. Viola, T. Havel,
N. Boulant, G. Boutis, E. Fortunato, S. Lloyd, R. Mar-
tinez, et al., Fortschr. Phys. 48, 875 (2000).

[15] L. Vandersypen, C. Yannoni, and I. Chuang, in to ap-
pear in The encyclopedia of NMR (supplement), edited
by D. Grant and R. Harris (John Wiley and Sons, West
Sussex, England, 2001).

[16] M. Nielsen and I. Chuang, Quantum computation
and quantum information (Cambridge University Press,
Cambridge, England, 2000).

[17] Guilde, Riebe, Lancaster, Becher, Eschner, Haffner,
Schmidt-Kaler, Chuang, and Blatt, Nature 421, 48
(2003).

[18] J. S. Bell, Physics 1, 195 (1964), URL http://www.

http://www.drchinese.com/David/Bell_Compact.pdf

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp 14

drchinese.com/David/Bell_Compact.pdf.

Appendix A: Suggested advanced topics

1. NMR techniques for quantum computation with
other physical systems

The techniques you learned in this lab for quantum
computation with NMR are actually extremely similar
to what is employed to perform quantum computations
with other atomic, molecular, and optical implementa-
tions. For example, the Deutsch-Jozsa algorithm was re-
cently implemented [17] on a trapped Ca ion, using pulses
of laser light similar to the RF pulses used in this lab.
Investigate how quantum bits are realized using trapped
ions or superconductors and describe how pulsed excita-
tions implement quantum computations in those systems.

2. Entangled states in NMR

One of the most intriguing aspects of quantum sys-
tems is a property known as entanglement. It is widely
believed that entanglement is necessary to achieve any
significant computational speedup (or nontrivial crypto-
graphic protocol with qubits), although this necessity re-
mains unproven in general. By definition, a pure state
of two systems A and B in a state |ψAB〉 is entangled
if and only if it cannot be written as a tensor product,
that is, there does not exist |ψA〉 and |ψB〉 such that
|ψAB〉 = |ψA〉⊗|ψB〉. Of such entangled states, the most
well studied are the four two-qubit states

|Ψ+〉 =
|00〉+ |11〉√

2

|Ψ−〉 =
|00〉 − |11〉√

2

|Φ+〉 =
|01〉+ |10〉√

2

|Φ−〉 =
|01〉 − |10〉√

2
, (A1)

called the Bell state [16, 18]. Give quantum circuits for
creating these four states from the initial state |00〉, de-
scribe how to implement them on the two-qubit chlo-
roform system used in this lab, and explain what the
measured output signal should be.

Appendix B: Bloch sphere representation of a single
qubit

Recall that a single qubit in the state a|0〉 + b|1〉 can
be visualized as a point (θ, φ) on the unit sphere, where
a = cos(θ/2), b = eiφ sin(θ/2), and a can be taken to be

real because the overall phase of the state is unobserv-
able. This is called the Bloch sphere representation, and
the vector (cosφ sin θ, sinφ sin θ, cos θ) is called the Bloch
vector.

The Pauli matrices give rise to three useful classes of
unitary matrices when they are exponentiated, the rota-
tion operators about the x̂, ŷ, and ẑ axes, defined by the
equations:

Rx(θ) ≡ e−iθX/2 = cos
θ

2
I − i sin

θ

2
X

=

[
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

]
(B1)

Ry(θ) ≡ e−iθY/2 = cos
θ

2
I − i sin

θ

2
Y

=

[
cos θ2 − sin θ

2

sin θ
2 cos θ2

]
(B2)

Rz(θ) ≡ e−iθZ/2 = cos
θ

2
I − i sin

θ

2
Z

=

[
e−iθ/2 0

0 eiθ/2

]
. (B3)

One reason why the Rn̂(θ) operators are referred to as
rotation operators is the following fact. Suppose a single

qubit has a state represented by the Bloch vector ~λ. Then
the effect of the rotation Rn̂(θ) on the state is to rotate
it by an angle θ about the n̂ axis of the Bloch sphere.
This explains the rather mysterious looking factor of two
in the definition of the rotation matrices.

An arbitrary unitary operator on a single qubit can
be written in many ways as a combination of rotations,
together with global phase shifts on the qubit. A useful
theorem to remember is the following: Suppose U is a
unitary operation on a single qubit. Then there exist
real numbers α, β, γ and δ such that

U = eiαRx(β)Ry(γ)Rx(δ). (B4)

Appendix C: Fundamental equations of magnetic
resonance

The magnetic interaction of a classical electromag-
netic field with a two-state spin is described by the

Hamiltonian H = −~µ · ~B, where ~µ is the spin and
B = B0ẑ + B1(x̂ cosωt + ŷ sinωt) is a typical applied
magnetic field. B0 is static and very large, and B1 is
usually time varying and several orders of magnitude
smaller than B0 in strength, so that perturbation theory
is traditionally employed to study this system. However,
the Schrödinger equation for this system can be solved
straightforwardly without perturbation theory, in terms
of which the Hamiltonian can be written as

H =
ω0

2
Z + g(X cosωt+ Y sinωt), (C1)

http://www.drchinese.com/David/Bell_Compact.pdf

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp 15

where g is related to the strength of the B1 field, and
ω0 to B0, and X, Y , Z are the Pauli matrices as usual.
Define |φ(t)〉 = eiωtZ/2|χ(t)〉, such that the Schrödinger
equation

i∂t|χ(t)〉 = H|χ(t)〉 (C2)

can be re-expressed as

i∂t|φ(t)〉 =
[
eiωZt/2He−iωZt/2 − ω

2
Z
]
|φ(t)〉. (C3)

Since

eiωZt/2Xe−iωZt/2 = (X cosωt− Y sinωt), (C4)

Eq. (C3) simplifies to become

i∂t|φ(t)〉 =

[
ω0 − ω

2
Z + gX

]
|φ(t)〉, (C5)

where the terms on the right multiplying the state can be
identified as the effective ‘rotating frame’ Hamiltonian.
The solution to this equation is

|φ(t)〉 = e
i

[
ω0−ω

2 Z+gX

]
t
|φ(0)〉. (C6)

The concept of resonance arises from the behavior of
this solution, which can be understood to be a single
qubit rotation about the axis

n̂ =
ẑ + 2g

ω0−ω x̂√
1 +

(
2g

ω0−ω

)2
(C7)

by an angle

|~n| = t

√(
ω0 − ω

2

)2

+ g2. (C8)

When ω is far from ω0, the spin is negligibly affected
by the B1 field; the axis of its rotation is nearly parallel
with ẑ, and its time evolution is nearly exactly that of the
free B0 Hamiltonian. On the other hand, when ω0 ≈ ω,
the B0 contribution becomes negligible, and a small B1

field can cause large changes in the state, corresponding
to rotations about the x̂ axis. The enormous effect a
small perturbation can have on the spin system, when
tuned to the appropriate frequency, is responsible for the
‘resonance’ in nuclear magnetic resonance.

In general, when ω = ω0, the single spin rotating frame
Hamiltonian can be written as

H = g1(t)X + g2(t)Y, (C9)

where g1 and g2 are functions of the applied transverse
RF fields.

Appendix D: State tomography

How does one debug a quantum computer? A classi-
cal computer is analyzed by measuring its internal state
at different points in time. Analogously, for a quantum
computer, an essential technique is the ability to measure
its density matrix — this is called state tomography.

Recall that the density matrix of a single qubit can be
expressed as

ρ =
1

2

[
1 +

∑
k

rkσk

]
, (D1)

where σk are the Pauli matrices and rb is a real, three-
component vector. Because of the trace orthogonality
property of Pauli matrices,

tr(σkσj) = 2δkj , (D2)

it follows that ρ can be reconstructed from the three mea-
surement results

rk = 〈σk〉 = tr(ρσk). (D3)

Measurement of the usual observable in NMR — Eq. (15)
— preceded by the appropriate single qubit pulses, allows
us to determine 〈σk〉, and thus obtain ρ. Similar results
hold for larger numbers of spins. In practice, it is con-
venient to measure just the traceless deviation of ρ from
the identity; this is called the deviation density matrix.

Appendix E: Quantum algorithm: Grover (optional)

In this lab, you may optionally implement the Grover
quantum search algorithm on two qubits.

1. Theory

Another quantum algorithm which solves a problem
faster than is possible classically is Grover’s quantum
search algorithm: for a problem size of four elements
(n = 2 qubits), we are given the set x = {0, 1, 2, 3} for
which f(x) = 0 except at one value x0, where f(x0) = 1.
The goal is to find x0, which can be classically accom-
plished by evaluating f(x) an average of 2.25 times. In
comparison, the quantum algorithm finds x0 by evaluat-
ing f(x) only once.

Three operators are required: the oracle operator O
(which performs a phase flip based on the function f(x)),
the Hadamard operator on two qubits H⊗2, and the con-
ditional phase shift operator P . The oracle O flips the
sign of the basis element corresponding to x0; for x0 = 3,
this is

O =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 . (E1)

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp 16

Denoting free evolution period of time 1/2J as τ , we find
that O = Ry1Rx1Rȳ1Ry2Rx2Rȳ2τ (up to an irrelevant
overall phase factor) for the x0 = 3 case, where each of
the rotations is by the angle π/2. H⊗2 is the operator

H⊗2 =
1√
2

[
1 1

1 −1

]
⊗ 1√

2

[
1 1

1 −1

]
, (E2)

which can be implemented as H⊗2 =
Rx1(π)Ry1(π/2)Rx2(π)Ry2(π/2). And the operator

P =

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 (E3)

is simply realized as P = Ry1Rx̄1Rȳ1Ry2Rx̄2Rȳ2τ , where
again the angles are π/2. From these, we construct the
Grover iteration G = H⊗2PH⊗2O. This operator can be
simplified straightforwardly by eliminating unnecessary
operations which obviously cancel.

Let |ψk〉 = GkH⊗2|00〉 be the state after k applica-
tions of the Grover iteration to the initial state. We
find that the amplitude 〈x0|ψk〉 ≈ sin((2k + 1)θ), where
θ = arcsin(1/2); this periodicity is a fundamental prop-
erty of the quantum search algorithm, and is a natu-
ral feature to test in an experiment. For x0 = 3, we
find |ψ1〉 = |11〉, which is the desired result. Indeed,
for the other three possible values of x0 we also find
|ψ1〉 = |x0〉. Another feature of the algorithm is that
|x0〉 = |ψ1〉 = −|ψ4〉 = |ψ7〉 = −|ψ10〉, a period of 3 if
the overall sign is disregarded. You may (optionally) im-
plement Grover’s algorithm and observe all four cases of
x0. Time permitting, you may also confirm the predicted
oscillatory behavior.

2. Implementation of Grover quantum algorithm

The Grover algorithm for two qubits has four possible
cases, corresponding to searching one of the four special
elements x0, x1, x2 or x3. Construct the individual cir-
cuit elements, P and O using just Z-rotation, time delays
and Hadamard gates. Then simplify your sequences us-
ing the tricks below and keeping in mind that Z-rotations
and time delays commute:

H = Z2Ȳ

H = X2Y

ZȲ Z̄ = X. (E4)

Do not simplify the first two Hadamard gates. You will
be able to specify the number of Grover iterations you
wish to apply.

Write pulse programs for all these four cases, and run
NMRRunPulseProg to acquire the data.

Appendix F: Interface to Bruker’s xwin-nmr

This appendix contains some reference information
about the QIP experiment software configuration which
you will generally not need to know for this lab, but may
be helpful for instructors when debugging problems.
netnmr2 is a C program (called an “au” script) which

runs under xwin-nmr. It is a server which listens on a
special socket port for commands sent from Matlab over
TCP/IP. Under xwin-nmr, you can start a netnmr2 pro-
cess by typing “netnmr2” into the xwin-nmr command
prompt line; it will respond with a message saying that
the server is running. You can check to see if a netnmr2
server is already running by typing “show cmd”. You can
kill a process by typing “kill” and then clicking on the
process to kill.
Matlab speaks to netnmr2 using a MEX function,

nmrx. This function can send text commands to xwin-
nmr, read parameters, run experiments, and retrieve
data. For example, nmrx(’zg’) sends the “zg” com-
mand to xwin-nmr, which is “zero-go”: it zeros memory
then runs an experiment. This command waits until the
experiment is done, then returns control to Matlab.

Appendix G: Mathematics of composite quantum
systems

Given quantum systems A and B, how does one prop-
erly describe the composite quantum system represented
as “A + B” by the combination of the two subsystems?
In quantum mechanics, the answer is the tensor product.

Suppose V and W are vector spaces of dimension m
and n respectively. For convenience we also suppose that
V and W are Hilbert spaces. Then V ⊗W (read ‘V tensor
W ’) is an mn dimensional vector space. The elements
of V ⊗ W are linear combinations of ‘tensor products’
|v〉⊗|w〉 of elements |v〉 of V and |w〉 of W . In particular,
if |i〉 and |j〉 are orthonormal bases for the spaces V and
W then |i〉 ⊗ |j〉 is a basis for V ⊗W . We often use the
abbreviated notations |v〉|w〉, |v, w〉 or even |vw〉 for the
tensor product |v〉 ⊗ |w〉. For example, if V is a two-
dimensional vector space with basis vectors |0〉 and |1〉
then |0〉⊗ |0〉+ |1〉⊗ |1〉 is an element of V ⊗V . In terms
of vector notation, for example, where |0〉 = (10)T and
|1〉 = (01)T , the tensor product |0〉 ⊗ |1〉 = (0100)T , and
|0〉 ⊗ |0〉 = (1000)T , and so forth.

By definition the tensor product satisfies the following
basic properties:

1. For an arbitrary scalar z and elements |v〉 of V and
|w〉 of W ,

z (|v〉 ⊗ |w〉) = (z|v〉)⊗ |w〉 = |v〉 ⊗ (z|w〉) . (G1)

2. For arbitrary |v1〉 and |v2〉 in V and |w〉 in W ,

(|v1〉+ |v2〉)⊗ |w〉 = |v1〉 ⊗ |w〉+ |v2〉 ⊗ |w〉. (G2)

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp 17

3. For arbitrary |v〉 in V and |w1〉 and |w2〉 in W ,

|v〉 ⊗ (|w1〉+ |w2〉) = |v〉 ⊗ |w1〉+ |v〉 ⊗ |w2〉. (G3)

For matrices, the tensor product is also known as the
Kronecker product. For example, suppose A is an m by
n matrix, and B is a p by q matrix. Then we have the
matrix representation:

np︷ ︸︸ ︷
A⊗B ≡

A11B A12B . . . A1nB

A21B A22B . . . A2nB
...

...
...

...

Am1B Am2B . . . AmnB

mp. (G4)

In this representation terms like A11B denote p by q sub-
matrices whose entries are proportional to B, with over-
all proportionality constant A11. For example, the tensor
product of the vectors (1, 2) and (2, 3) is the vector

[
1

2

]
⊗

[
2

3

]
=

1× 2

1× 3

2× 2

2× 3

 =

2

3

4

6

 . (G5)

The tensor product of the Pauli matrices X and Y is

X ⊗ Y =

[
0 · Y 1 · Y
1 · Y 0 · Y

]
=

0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

 . (G6)

In Matlab, you can use the function kron for the Kro-
necker product.

Appendix H: How proton and carbon spectra arise
from the density matrix

A two-spin density matrix

ρ =

a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

 (H1)

produces a proton spectrum with peak areas a − c and
b− d for the ωP − J/2 and ωP + J/2 peaks, respectively,
after a Rx(π/2)⊗ I proton readout pulse is applied. The
same density matrix also produces a carbon spectrum
with peak areas a − b and c − d for the ωC − J/2 and
ωC +J/2 peaks, respectively, after a I ⊗Rx(π/2) carbon
readout pulse is applied.

Here, we prove this claim, based on the fact that the
voltage in the pick-up coil for spin k is given by

V (t) = −V0tr
[
e−iHtρeiHt(iσkx + σky)

]
, (H2)

where H is the Hamiltonian for the two-spin system, σkx
and σky operate only on the kth spin, and V0 is a constant
factor dependent on coil geometry, quality factor, and
maximum magnetic flux from the sample volume.

1. The readout operator

Let RxP = Rx(π/2)⊗ I denote a π/2 readout pulse on
the proton, and RxC similarly for the carbon. Our goal
is to compute

VP (t) = −V0tr
[
e−iHtRxP ρR

†
xP e

iHt[(iσx + σy)⊗ I]
]
,

(H3)
and similarly for the carbon. It is helpful first to move
into the rotating frame of the proton and carbon, in
which case nothing changes except we utilize the Hamil-
tonian

H =
J

4
σz ⊗ σz, (H4)

representing the spin-spin coupling. Utilizing the cyclic
property of the trace, VP (t) can be written as

VP (t) = −V0tr
[
ρR†xP e

iHt[(iσx + σy)⊗ I]e−iHtRxP

]
,

(H5)
at which point it is useful to define

M̂P = −R†xP e
iHt
[
(iσx + σy)⊗ I

]
e−iHtRxP (H6)

as our proton magnetization “readout operator,” such
that VP (t) = V0tr(ρM̂P). Explicitly working this out in
terms of matrix products, we obtain:

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp 18

M̂P = −R†xP e
iHt

0 0 0 0

0 0 0 0

2i 0 0 0

0 2i 0 0

 e−iHtRxP

= −R†xP

e

i
4Jt 0 0 0

0 e
−i
4 Jt 0 0

0 0 e
−i
4 Jt 0

0 0 0 e
i
4Jt

0 0 0 0

0 0 0 0

2i 0 0 0

0 2i 0 0

e

−i
4 Jt 0 0 0

0 e
i
4Jt 0 0

0 0 e
i
4Jt 0

0 0 0 e
−i
4 Jt

RxP

= −R†xP

0 0 0 0

0 0 0 0

2ie−iJt/2 0 0 0

0 2ieiJt/2 0 0

RxP

= −

1√
2

0 i√
2

0

0 1√
2

0 i√
2

i√
2

0 1√
2

0

0 i√
2

0 1√
2

0 0 0 0

0 0 0 0

2ie−iJt/2 0 0 0

0 2ieiJt/2 0 0

1√
2

0 −i√
2

0

0 1√
2

0 −i√
2

−i√
2

0 1√
2

0

0 −i√
2

0 1√
2

=

e−iJt/2 0 −ie−iJt/2 0

0 eiJt/2 0 −ieiJt/2

−ie−iJt/2 0 −e−iJt/2 0

0 −ieiJt/2 0 −eiJt/2

 . (H7)

Similarly, we find that the analogous carbon magnetiza-
tion “readout operator” M̂C is

M̂C = −R†xCe
iHt
[
I ⊗ (iσx + σy)

]
e−iHtRxC

= −R†xCe
iHt

0 0 0 0

2i 0 0 0

0 0 0 0

0 0 2i 0

 e−iHtRxC

=

e−iJt/2 −ie−iJt/2 0 0

−ie−iJt/2 −e−iJt/2 0 0

0 0 eiJt/2 −ieiJt/2

0 0 −ieiJt/2 −eiJt/2

 .
(H8)

2. The proton and carbon spectra

M̂P and M̂C are very useful, because they now allows
us to compute the free induction decay signal for the
proton (centered in frequency around ωP) and carbon
(centered about ωC) for any state ρ. For the state in
Eq. (H1), we obtain the proton FID

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp 19

VP (t) = V0tr(ρM̂P)

= V0tr

a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

e
−i
2 Jt 0 −ie− i

2Jt 0

0 e
i
2Jt 0 −ie i

2Jt

−ie− i
2Jt 0 −e−i

2 Jt 0

0 −ie i
2Jt 0 −e i

2Jt

= V0

[
(a− c)e−iJt/2 + (b− d)eiJt/2

]
. (H9)

And for the carbon FID,

VC(t) = V ′0tr(ρM̂C) = V0

[
(a− b)e−iJt/2 + (c− d)eiJt/2

]
.

(H10)
Note that in general, it is likely that the proton and

carbon signals have different voltage scale factors V0,
since they are usually detected by different pick-up coils
in an experimental apparatus, and this is reflected in the
use of V ′0 in the last equation above.

These equations may also be used to show why appli-
cation of two simultaneous readout pulses (to proton and
carbon) in one experiment may give different final volt-
age signals than applying one readout pulse at a time
and doing two experiments.

Appendix I: Matlab script qipgates.m

This is a Matlab script which defines quantities useful
for computing what you should obtain theoretically in
this experiment. The theory describes the experiment
extremely well, so what you obtain with Matlab is what
you can obtain in the experiment.

%
% File: qipgates.m
% Date: 26-Feb-03
% Author: I. Chuang <ichuang@mit.edu>
%
% Standard QC gates; with proper sign convention to be
% consistent with MIT Junior Lab quantum information processing labguide

global hadamard cnot cphase sx sy sz si rx ry rz N zz xx yy

%%%
% pauli matrices

sx = [0 1; 1 0];
sy = [0 -i; i 0];
sz = [1 0; 0 -1];
si = [1 0; 0 1];

pauli = {sx,sy,sz};

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp 20

%%%
% two-qubit interaction terms

zz = kron(sz,sz);
xx = kron(sx,sx);
yy = kron(sy,sy);
zi = kron(sz,si);
iz = kron(si,sz);
ii = kron(si,si);

%%%
% single qubit rotations (acting on 1 qubit: 2x2 unitaries)

rx = expm(-i*pi/4*sx);
ry = expm(-i*pi/4*sy);
rz = expm(-i*pi/4*sz);

%%%
% single qubit rotations (acting on 1 of 2 qubits: 4x4 unitaries)

rx1 = kron(si,rx);
rx2 = kron(rx,si);
ry1 = kron(si,ry);
ry2 = kron(ry,si);
rz1 = kron(si,rz);
rz2 = kron(rz,si);

%%%
% one-qubit computational basis states

psi0 = [1 ; 0];
psi1 = [0 ; 1];

%%%
% two-qubit computational basis states

psi00 = kron(psi0,psi0);
psi01 = kron(psi0,psi1);
psi10 = kron(psi1,psi0);
psi11 = kron(psi1,psi1);

%%%
% two-qubit Hamiltonian (for CHCl3) & coupled evolution gate

ham = zz;
tau = expm(-i*pi/4*zz);

%%%
% standard ideal quantum logic gates

hadamard = [1 1 ; 1 -1]/sqrt(2);
cnot = [1 0 0 0 ; 0 1 0 0 ; 0 0 0 1 ; 0 0 1 0];
cphase = [1 0 0 0 ; 0 1 0 0 ; 0 0 1 0 ; 0 0 0 -1];

Id: 49.qip.tex,v 1.80 2015/03/31 04:36:36 spatrick Exp 21

%%%
% Example: near-controlled-not

Uncnot = ry1’ * tau * rx1;

%%%
% Example: effect of Uncnot on thermal state density matrix

rho_therm = [5 0 0 0; 0 3 0 0; 0 0 -3 0; 0 0 0 -5];
rho_out = Uncnot * rho_therm * Uncnot’;

%%%
% Example: Deutsch-Jozsa

Uf1 = [1 0 0 0 ; 0 1 0 0 ; 0 0 1 0 ; 0 0 0 1];
Uf2 = [0 1 0 0 ; 1 0 0 0 ; 0 0 0 1 ; 0 0 1 0];
Uf3 = [1 0 0 0 ; 0 1 0 0 ; 0 0 0 1 ; 0 0 1 0];
Uf4 = [0 1 0 0 ; 1 0 0 0 ; 0 0 1 0 ; 0 0 0 1];

Udj1 = ry2’ * ry1 * Uf1 * ry2 * ry1’;
Udj2 = ry2’ * ry1 * Uf2 * ry2 * ry1’;
Udj3 = ry2’ * ry1 * Uf3 * ry2 * ry1’;
Udj4 = ry2’ * ry1 * Uf4 * ry2 * ry1’;

Out1 = Udj1 * psi00;
Out2 = Udj2 * psi00;
Out3 = Udj3 * psi00;
Out4 = Udj4 * psi00;

MIT
OpenCourseWare
https://ocw.mit.edu

8.13-14 Experimental Physics I & II "Junior Lab"
Fall 2016 - Spring 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

	Quantum Information Processing with NMR
	Abstract
	Preparatory questions
	Suggested schedule
	Introduction
	Factoring and Search
	Implementation

	Theory
	Qubits
	One and two qubit gates and circuits
	Single qubit gates
	Two qubit gates

	Quantum algorithm: Deutsch-Jozsa
	Quantum algorithm: Grover (optional)
	Implementation with NMR

	Apparatus
	Sample
	NMR spectrometer hardware
	Control system and software environment

	Measurements
	Overview
	Apparatus setup
	Measurement of phref, P, C, and J
	Calibration of 90 degree pulse widths
	Measurement of T1 and T2
	Characterization of cnot and its truth table
	Implementation of Deutsch-Jozsa quantum algorithm

	Analysis
	Analysis of initial setup
	Analysis of pulse width calibration
	Analysis of CNOT truth table

	References
	Suggested advanced topics
	NMR techniques for quantum computation with other physical systems
	Entangled states in NMR

	Bloch sphere representation of a single qubit
	Fundamental equations of magnetic resonance
	State tomography
	Quantum algorithm: Grover (optional)
	Theory
	Implementation of Grover quantum algorithm

	Interface to Bruker's xwin-nmr
	Mathematics of composite quantum systems
	How proton and carbon spectra arise from the density matrix
	The readout operator
	The proton and carbon spectra

	Matlab script qipgates.m

