
 

   

              
               

               
              

              
            

 

 

        
       

        
        

        

    

         
           

        
            

           
          
           

       

         
     

Poisson Statistics 

MIT Department of Physics 

In this experiment, you will explore the statistics of random, independent events in physical 
measurements. The random events used in this study will be pulses from a scintillation detector 
exposed to gamma rays from a radioactive source. The measurement will be compared to Poisson 
or Gaussian distributions which often govern the spread of physical data. A computer simulation 
using Monte-Carlo techniques will provide comparison for different numbers of events and give a 
demonstration of “normal” statistical fluctuations. 
modern physics. 

PREPARATORY QUESTIONS 

Please visit the Poisson Statistics chapter on the 
course website to review the background material for 
this experiment. Answer all questions found in the 
chapter. Work out the solutions in your laboratory 
notebook; submit your answers on the web site. [Note: 
Not available to OCW users.] 

I. THEORY OF POISSON STATISTICS 

A sequence of independent random events is one in 
which the occurrence of any event has no effect on the 
occurrence of any other. One example is simple radioac-
tive decay such as the emission of 663 keV photons by a 
sample of 137Cs. In contrast, the fissions of nuclei in a 
critical mass of 235U are correlated events in a “chain re-
action” in which the outcome of each event, the number of 
neutrons released, affects the outcome of subsequent 
events. 

A continuous random process is said to be “steady 
state with mean rate R” if � � x 

lim = R (1)
T →∞ T 

where x is the number of events accumulated in time T . 
How can one judge whether a certain process does, in-

deed, have a rate that is steady on time scales of the 
experiment itself? The only way is to make repeated 
measurements of the number of counts xi in time inter-
vals ti and determine whether there is a trend in the suc-
cessive values of xi/ti. Since these ratios are certain to 
fluctuate, the question arises as to whether the observed 
fluctuations are within reasonable bounds for a fixed rate. 
Clearly, one needs to know the probability distribution 
of the numbers of counts x in a fixed interval of time T 
if the process does indeed have a steady rate R. That 
distribution is known as the Poisson distribution and is 
defined by the equation 

x −µµ e
P (x; µ) = , (2) 

x! 

which is the probability of recording x counts (always an 
integer) when µ = RT (generally not an integer) is the 
expected number. It is easy to show that the standard 

This comparison technique is widely used in 

√ 
deviation of the Poisson distribution is simply µ, that 
is, the square root of the mean. Derivations of the Pois-
son distribution and its standard deviation are given in 
References [1, 2]. You should study and understand bino-
mial, Poisson, and Gaussian distributions and their limits 
of application. Keep in mind that although Eqn. (2) is a 
function of the variable µ (or R and T ), it is a probability 
distribution only for the random variable x. 

II. EXPERIMENT 

In the first part of this experiment you will set up 
a scintillation counter, expose it to gamma rays from a 
radioactive source (and ubiquitous cosmic rays)1 , and 
record the frequency distribution of the numbers of 
counts in equal intervals of time. This will be repeated 
for four situations with widely different mean count rates, 
approximately 1, 5, 10, and 100 counts per second. You 
only know the “real” average rate at the end, but you 
should aim for these values within 25%. The experi-
mental distributions and their standard deviations will 
be compared with the theoretical distributions and their 
standard deviations. 
Later, you will generate Poisson distributions with a 

Monte Carlo simulation and compare them with the dis-
tributions produced by nature in your counting measure-
ments. 

II.1. Setup to Measure Poisson Statistics 

Set up the scintillation counter as shown in Figure 1. 
Expose the detector to gamma rays from a 137Cs, 60Co, 
or 22Na laboratory calibration source (a 1/200 × 500 plas-
tic rod with the source embedded in the colored end). 
The voltage applied to the photomultiplier should be 

1 Note: even without external sources of radiation, scintillation 
counters of the kind used in this experiment will produce random 
small amplitude pulses at a steady rate due to thermal fluctua-
tion in the photomultiplier tube. 
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FIG. 1. The setup for measuring the number of counts from a 
random process (radioactive decay) in a given time interval. 
An oscilloscope (not shown) is used to monitor the proper 
functioning of the system. 

about2 +1000 V. Feed the output of the photomultiplier 
to the INPUT connector on a charge-sensitive preampli-
fier. (Some photomultiplier assemblies are provided with 
a built-in preamplifier.) Use the oscilloscope to view the 
output of the preamplifier and draw it in your lab note-
book. Note especially the rise and decay time of the 
signal as well as the peak amplitude and polarity. 
Next, connect the output of the preamplifier to the 

INPUT connector on the back or front of the ampli-
fier. The amplified signal should be taken from the 
UNIPOLAR OUT connector on the front of the ampli-
fier and examined on the oscilloscope (sweep speed 
1 µsec/division, vertical amplitude 1 volt/division, or 
whatever settings allow you to best observe the signal) 
to confirm the proper performance of the measurement 
chain. Among the pulses of various amplitude that you 
see on the scope, identify those that correspond to the 
signals of interest, i.e. the check source gamma rays. Ad-
just the gain of the amplifier such that these signal pulses 
are about +5 V amplitude. If you trigger the scope on 
the rising edge of the pulses and set the trigger level to 
about +3 V, then you should see a signal which starts 
on the left-hand side of the oscilloscope display, crosses 
“time zero” at about 3 V, rises to a maximum of about 
5 V, goes slightly negative, and finally levels off at zero. 
Again, note the pulse properties on the oscilloscope and 
record them in your notebook. Ask for assistance on this 
step if you are unfamiliar with the operation of an oscil-

2 As with all suggested apparatus settings in Junior Lab lab man-
uals, the given value will be near a value which gives good signal, 
but you may find that a different value works better. In general, 
do not use a value simply because the lab manual say so. Instead, 
try to understand what experimental condition would cause one 
to prefer one value over another, and then optimize your choice 
of settings for that condition. 

loscope. 
Note: Throughout Junior Lab, you should pay close at-

tention to the polarities of applied and detected voltages. 
Incorrectly setting the polarity on an oscilloscope trigger 
can be very frustrating! 
Feed the amplifier output into the POS IN(A) con-

nector on the scaler. (“Scaler” is another name for a 
“counter”.) Start with the scaler’s discriminator set at 
its lowest value, usually about 0.1 V. Set the scaler to 
repeatedly acquire for about 5 seconds, display the re-
sult, and then start again. Observe how increasing the 
discriminator threshold decreases the count rate. If you 
set the discriminator on the counter to about 3 V (i.e. 
the same as the trigger level on the oscilloscope), then 
there should be an approximate one-to-one correspon-
dence between pulses counted and pulses displayed on 
the oscilloscope. 

II.2. Procedure 

You can control the counting rate by adjusting the dis-
tance of the source from the scintillator, by varying the 
high voltage supplied to the photomultiplier, by varying 
the gain of the amplifier, or by changing the threshold 
level of the discriminator3 . Arrange the experimental 
conditions to yield four different mean count rates of ap-
proximately 1 sec−1, 5 sec−1, 10 sec−1, and 100 sec−1 . 
Record your instrumental settings and prepare 

tables in your lab notebook for recording the 
count data in a neat and compact form4 . 

At each of these four approximate rates, record the 
counts for 100 repeated one-second intervals directly into 
your lab notebook. Then, for each of these four approxi-
mate rates, also record the number of events in one long 
run of 100 consecutive seconds. 

II.3. Analysis 

The following analysis requires the use of repetitive 
arithmetic on the collected data set. You could use either 
Matlab or any other preferred tool. 

a) For each of the four runs, calculate and plot the cu-
mulative average, rc(j), of the rate as a function of 
the sequence number, j, of the count. “Cumulative 

3 Incidentally, even without a check source nearby, you should see 
signals due to cosmic rays at the rate of about 1 cm−2 min−1 . 

4 Whenever experimental conditions feasibly allow, it is desirable 
to use your own mind and hands to record data, rather than an 
automated data logger, as this process more readily engages the 
senses and other mental pathways, bringing about a more active 
awareness and understanding of the experiment. 
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average” means the quantity Pi=j 
i=1 xi 

rc(j) = Pi=j . (3) 
i=1 ti 

where xi is the number of counts detected in time 
ti. For a process which is truly steady with mean 
rate µ, rc(j) should converge to µ in the asymp-
totic limit. Include error bars to demonstrate con-
vergence. 

b) Calculate the mean and standard deviation of each 
of the four 100-trial distributions, and compare the 
results with the mean and standard deviation of 
the corresponding 100-second run. Are they con-
sistent? To within how many standard deviations? 

c) Using the mean rate just determined, calculate the 
predicted Poisson frequency distribution (renor-
malized by multiplying by the total number of read-
ings). Make a plot with “frequency bins” (counts 
per 1-second acquisition) on the horizontal axis and 
“number of events” (frequency of occurrence) for 
each bin on the vertical axis, as in Figure 2. Plot 
your data and calculated distribution on the same 
axes for ease of comparison. Be sure to include 
error bars on the data points. 

d) For the observed distribution with the lowest mean 
rate (∼1 sec−1), take the highest deviation from 
that mean and test whether you might be justified 
in concluding that the counter was malfunctioning. 
Remember that there were 100 opportunities for 
such a deviation to occur. 

e) For large values of µ, you can use the Gaussian 
approximation to the Poisson formula as given by 
the relation 

1 −(x−µ)2 /2µlim p(x; µ) = √ e . (4) 
µ→∞ 2πµ 

Qualitatively, compare the Poisson and Gaussian 
distributions for µ values equal to the averages com-
puted from both the µ ≈ 5 and µ ≈ 100 data sets. 
Make the comparison quantitative by computing 
χ2 values between the theoretical distributions and 
your data. Which distribution (Poisson or Gaus-
sian) is preferred at each mean rate? 

II.4. Simulating Poisson Statistics Using Matlab 

You can run the simulations on your own copy of Mat-
lab (you can download the scripts from the experiment 
website) or the Athena version. 
To access the scripts on Athena, add the Junior Lab 

locker by typing 

%> setup 8.13 
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FIG. 2. A frequency distribution of observed numbers of 
counts. The renormalized Poisson distribution for the ob-
served mean value is also plotted. 

Then, within Matlab type 

>> addpath /mit/8.13/matlab 

The two Matlab scripts, poisson.m and poissonsim.m, 
can also be downloaded off the Junior Lab website and 
added into Matlab’s working directory. 
For information on how to use either one, type 

>> help poissonsim 

from within Matlab. For example, type 

>> poissonsim(3,20) 

which will generate a 20 sample population with a mean 
of 3. The solid curve represents the theoretical Poisson 
distribution while the red dots represent the simulated 
sample population. The poissonsim function will output 
two vectors: the frequency of each rate (i.e. the counts 
in each bin shown in the graph) and the count rates for 
all of the trials. 

1. Generate 1000-trial distributions for your measured 
mean rates (≈ 1, 5, 10, 100). 

2. Next, generate ten 100-trial distributions for each 
of the four mean counts you obtained in the ex-
perimental section using the scintillation counters. 
Record the mean values and standard deviations 
for each set of 10 distributions. 

3. Compare the Monte Carlo-generated Poisson distri-
butions with the experimental ones you obtained 
with the scintillation counter. The mean of the 
standard deviations should converge (within some 
statistical error) to the square root of the mean that 
is input to the Poisson generator. 

4. Determine the error on µ and σ from the scatter of 
the ten distributions. 
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III. STATISTICAL EXERCISE 

The following questions are a subset of the full analysis 
discussed in Section II.3. 

1. For the 100 one-second measurements at ∼5 Hz, 
evaluate the average and the variance and compare 
the results with the mean and standard deviation 
of the long 100 second run. Are they consistent? 
To within how many standard deviations? 

2. Plot the distributions of your measured data sets 
and compare to Poisson distributions of your ex-
perimental means. Are the variances in agreement 
with the theoretical expectation? 

3. Fit the ∼5 Hz data set to both Gaussian and pois-
son functions. Which is preferred? Compare the 

[1] P. Bevington and D. Robinson, Data Reduction and Error 
Analysis for the Physical Sciences, 3rd ed. (McGraw-Hill, 
2003). 

[2] A. Melissinos and J. Napolitano, Experiments in Modern 
Physics, 3rd ed. (Academic Press, 2003). 

Appendix A: Monte Carlo Generation of a Random 
Variable 

Suppose we have a source of random numbers with a 
uniform distribution from 0 to 1. If we represent the uni-
form distribution by q(y), so that q(y0)dy0 is the prob-
ability that the random number y lies between y0 and 
0y + dy0, then obviously q(y0) = 1. The problem is how 

to convert a given random number y from this uniform 
distribution into a random variable x with a specified dis-
tribution p(x0) such that p(x0)dx0 is the probability that 
the variable x will turn up with a value in the infinites-
imal interval between x0 and x0 + dx0 . We must find a 
relation between the distributions of y and x such that 
p(x0)dx0 = q(y0)dy0 = dy0 . 

To do this we compute, analytically if possible but oth-
erwise numerically, the integral Z x 

P (x) = p(x 0)dx0 , (A1) 
−∞ 

which is the probability that the random variable will 
turn up with a value in the interval between −∞ and x. 
From this definition is follows that 

lim P (x) = 1, (A2) 
x→∞ 

since the probability that the random variable will turn 
up with some value is unity. Given the random number y, 
we set y = P (x) and solve for x. To find the distribution 
of the resulting value of x we differentiate this expression, 

χ2 values for your fits. 

IV. SUGGESTED THEORETICAL TOPICS FOR 
ORAL EXAM 

1. The Poisson distribution, its origin from the bino-
mial distribution and the limits of its application. 

2. The Gaussian approximation to the Poisson distri-
bution P (x; µ) for x � 10. 

3. The differential distribution in the time lag between 
successive random pulses that occur at a fixed av-
erage rate. 

using the rule for differentiating a definite integral with 
respect to its upper limit, and obtain dy = dP (x) = 
p(x)dx. Thus the distribution of x selected in this way is 
identical to the one specified. 
Figure 3 shows how this works graphically. From the 

figure it is evident that a horizontal line at a random 
position yi on the y-axis is more likely to intersect the 
P (x) function where it is steeper than elsewhere; i.e., 
where the differential probability is larger than elsewhere. 

FIG. 3. Illustration of Monte Carlo selection of a random 
variable with a specified differential probability distribution 
is shown above. yi is a random number between 0 and 1. xi 

is the value of the variable for which the integral probability 
distribution equals yi. 

The Poisson probability, being a discontinuous func-
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tion, is handled in a similar way, but with a summation 
rather than an integral. Given a value of µ < 88 and a 
random number y, the Poisson simulator finds the small-
est value of x for which P (x; µ) > y, where P is defined 
by the formula 

0 x =xX 
P (x; µ) = p(x 0; µ), (A3) 

x0=0 

in which p(x0; µ) is the Poisson probability specified 
above. That value of x is the desired Poisson variate. 

Inspect the Matlab .m files where the algorithm is 
described in more detail. 
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