
 

        
        

        
        

      

   

The Speed and Decay of Cosmic-Ray Muons: 
Experiments in the Relativistic Kinematics of the Universal Speed Limit and Time 

Dilation 

MIT Department of Physics 
 

The purpose of this experiment is to demonstrate the existence of a speed limit on the motion of 
particles by measuring the speed of cosmic-ray muons, and to demonstrate the relativistic dilation 
of time by comparing the mean life of muons at rest and in high speed motion. 

PREPARATORY QUESTIONS 

Please visit the Cosmic-Ray Muons chapter on the 
course website to review the background material for this 
experiment. Answer all questions found in the chapter. 
Work out the solutions in your laboratory notebook; 
submit your answers on the course website. [Note: Not 
available to OCW users] 

WHAT YOU WILL MEASURE 

1. According to classical mechanics the speed of a par-
ticle is proportional to the square root of its kinetic
energy. Since there is no limit, in principle, on the
kinetic energy of a body, there is no classical speed
limit. According to the theory of relativity there
is a speed limit. In the first of these experiments
you will measure the velocity distribution of high
energy muons that are generated high in the atmo-
sphere through the interactions of primary cosmic
ray nuclei and pass through the lab from ceiling to
floor.

2. In the second experiment you will measure the de-
cay curve of muons that have come to rest in a
scintillator and determine their mean life. Given
your measured values of the speed limit and the
mean life, and given the fact that most of the muons
are produced at altitudes above 10 km, you will
confront the fact that the muons that traverse the
scintillator paddles survived much longer than the
mean life of muons at rest in the laboratory. How
is that possible?

SUGGESTED PROGRESS CHECK AT END OF 
2nd SESSION 

Using your measured MCA distributions of muon time 
of flights for two different paddle positions, calculate the 
speed of the cosmic-ray muons to zeroth order. 

I. INTRODUCTION

Webster’s Ninth New Collegiate dictionary defines 
kinematics as “a branch of dynamics that deals with as-

pects of motion apart from considerations of mass and 
force.” Relativistic kinematics deals with motion at 
speeds approaching that of light. These experiments are 
concerned with phenomena of high speed kinematics — 
the distribution in speed of very high energy particles, 
and the comparative rates of clocks at rest and in high 
speed motion. 
Common sense, based on experience with compara-

tively slow motions, is a poor guide to an understand-
ing of high speed phenomena. For example, in classical 
kinematics velocities add linearly in accordance with the 
Galilean transformation, which implies no limit, in prin-
ciple, to the relative velocities of two bodies. On the 
other hand, Maxwell’s equations have solutions in the 
form of waves that travel in vacuum with the universal 
velocity c, without regard to the motion of the source or 
observer of the waves. Thus, until Einstein straightened 
things out in 1905 in his special theory of relativity, there 
was a fundamental contradiction lurking in the kinemat-
ical foundations of physics, as embodied in Newtonian 
mechanics and the Maxwell theory of electromagnetism 
[1]. 
This contradiction was laid bare in interferometry ex-

periments begun by Michelson in 1881, which demon-
strated the absence of any detectable effect of the motion 
of an observer on the velocity of light. Apparently with-
out knowing about the Michelson experiment, Einstein 
took this crucial fact for granted when he began to think 
about the problem in 1895 at the age of sixteen (Pais, 
1982). Ten years later he discovered the way to fix the 
contradiction; keep Maxwell’s equations intact and mod-
ify Galilean kinematics and Newtonian dynamics. The 
fundamental problem of kinematics is to find the rela-
tions between measurements of space, time and motion 
in different reference frames moving with respect to one 
another. An excellent reference on special relativity can 
be found in French (1968)[2]. 
Consider, for example, two events (think of two flash 

bombs, or the creation and decay of a muon) that occur 
on the common x-axes of two mutually aligned inertial 
coordinate systems A and B in uniform motion relative to 
one another in the direction of their x-axes. Each event is 
characterized by its four coordinates of position and time, 
which will, in general, be different in the two frames. 
Let xa, ya, za, ta represent the differences between the 
coordinates of the two events in the A frame, i.e., the 
components of the 4-displacement. Similarly, xb, yb, zb, 
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tb are the components of the 4-displacement in the B another. Thus the velocity of light in vacuum is raised to 
frame. According to the Galilean transformation of clas- the status of a universal constant — the absolute speed 
sical mechanics, the components of the 4-displacement in limit of the universe. The first experiment will demon-
A and B are related by the simple equations strate the consequences of this fact of relativity for the 

distribution in velocity of high-energy cosmic-ray muons. 
xb = xa − vta, yb = ya, zb = za, tb = ta (1) Consider what these equations imply about different 

observations of the time interval between two events such 
and their inverse as that between two flash bombs, or between the birth 

= xb + vtb, ta = tb, (2) 
and death of a particle or person. Suppose a rocket ship 

xa ya = yb, za = zb, carrying two flash bombs is at rest in frame B so that the 

where v is the velocity of frame B relative to frame A. If bombs go off at the same position in B (xb = 0) with a 

the two events are, in fact, two flash bombs detonated at separation in time of tb. Then ta = γtb; i.e., as measured 

a particular location in a third coordinate system (think in frame A, the time interval between the two events is 

of a rocket ship carrying the bombs) traveling in the x- longer by the Lorentz factor γ. This is the relativistic 

direction with velocity u relative to B, then dilation of time. 

xb 

tb 
= u and 

xa 

ta 
= u + v (3) 

I.1. Cosmic Rays 

i.e., the velocity of the rocket ship relative to A is the 
sum of its velocity relative to B and the velocity of B Much of the material in this section is taken from the 

relative to A. This simple result accords with common classic works by Bruno Rossi[3–5]. Interstellar space is 

sense based on experience with velocities that are small 
compared to c , the speed of light. Clearly, it implies no 

populated with extremely rarefied neutral and ionized 
gas (≈ 10−3 to 103 atoms/cm3), dust (≈ 1% to 10% of 

limit on the velocity of one body relative to another and gas), photons, neutrinos, and high-energy charged parti-

assigns no special significance to any particular velocity. 
For example, if u = 0.9c and v = 0.9c, then xa/ta = 

cles consisting of electrons and bare nuclei with energies 
per particle ranging up to 1021 eV. The latter, called cos-

1.8c. According to the special theory of relativity such a mic rays, constitute a relativistic gas that pervades the 

“superluminal” velocity is impossible because kinematics galaxy and significantly affects its chemical and physi-

is actually governed by the transformation equations cal evolution. The elemental composition of cosmic-ray 
nuclei resembles that of the sun, but with certain pecu-

xb = γ(xa − βcta), liarities that are clues to their origins. Most cosmic rays 

yb = ya, 
are generated in our galaxy, primarily in supernova ex-
plosions, and are confined to the galaxy by a pervasive 

zb = za, galactic magnetic field of several microgauss. It is an 
ctb = γ(cta − βxa), (4) interesting and significant fact that the average energy 

densities of cosmic rays, the interstellar magnetic field, 
and their inverse, and turbulent motion of the interstellar gas are all of the 

order of 1 eV/cm3 . 
xa = γ(xb + βctb), When a primary cosmic ray (90% of which are protons, 
ya = yb, 9% helium nuclei, 1% other) impinges on the Earth’s at-
za = zb, mosphere it interacts with an air nucleus, generally above 

cta = γ(ctb + βxb), (5) an altitude of 15 km. Such an interaction initiates a cas-
cade of high energy nuclear and electromagnetic interac-

where β = v/c and γ = 1/ (1 − β2). We obtain the 
p tions that produce an “air shower” of energetic particles 

addition equation for velocities, as before, by dividing spreading outward in a cylindrically symmetric pattern 

the equations for xa and ta. Thus 
around a dense core. (See Figure 1.) As the shower prop-
agates downward through the atmosphere the energy of 

xa 

ta 
= 

u + v 
1 + uv 

c2 

. (6) 
the incident and secondary hadrons (nucleons, antinucle-
ons, pions, kaons, etc.) is gradually transferred to leptons 
(weakly interacting muons, electrons and neutrinos) and 

Now, if u = 0.9c and v = 0.9c, then xa/ta = 0.9945c. gamma rays (high-energy photons) so that at sea level 
No compounding of velocities less than c can yield a rel- the latter are the principal components of “secondary” 
ative velocity of two bodies that exceeds c. Moreover, cosmic rays. Typical events in such a cascade are repre-
any entity that propagates with velocity c (i.e., massless sented by the reactions shown in Figure 1. High altitude 
particles such as photons, gravitons, and probably neu- observations show that most of the muons that arrive at 
trinos) relative to one inertial reference frame will propa- sea level are created above 15 km. At the speed of light 
gate with velocity c relative to every other inertial frame their trip takes ≈ 50 µs. 
regardless of the motions of the frames relative to one In 1932, Bruno Rossi, using Geiger tubes and his own 



3 Id: 14.muonlifetime.tex,v 1.64 2014/10/17 04:51:44 spatrick Exp 

invention, the triode coincidence circuit (the first practi-
cal AND circuit), discovered the presence of highly pen-
etrating and ionizing (i.e. charged) particles in cosmic 
rays. They were shown in 1936 by Anderson and Neder-
meyer to have a mass intermediate between the masses 
of the electron and the proton. In 1940, Rossi showed 
that these particles, now called muons, decay in flight 
through the atmosphere with a mean life in their rest 
frame of about 2 microseconds. Three years later, us-
ing another electronic device of his invention, the time to 
pulse-height converter (TAC), he measured the mean life 
of muons at rest in an experiment resembling the present 
one in Junior Lab, but with Geiger tubes instead of a 
scintillation detector. 
In an ironic twist of history, these particles were be-

lieved to be Yukawa type (pions) until 1947 when they 
+were found by Powell to be muons from π+ → µ + νµ. 

Cosmic rays are a convenient and free source of en-
ergetic particles for high energy physics experiments. 
They suffer the disadvantage of being a mixed bag of 
uncollimated particles of various kinds with low inten-
sity and a very broad range of energies. Nevertheless, 
the highest energy of a cosmic-ray primary measured so 
far, ≈ 1021 eV, exceeds by many orders of magnitude 
the practical limit of any existing or conceivable man-
made accelerator. Cosmic rays will therefore always be 
the only source of particles for the study of interactions 
at the highest observable energies. In the present exper-
iment they will be used to explore relativistic kinemat-
ics at the comparatively modest energies of a few GeV 
(1 GeV= 109 eV), which are the typical energies of the 
muons detected at sea level. 

I.2. The Speed Distribution of Cosmic-Ray Muons 

According to Newtonian mechanics the velocity of a 
particle is related to its energy and mass by the equation r r 

2E 2E 
v = 

m 
= c 

mc2 
. (7) 

For the muon the value of mc2 is 105.7 MeV. Thus, the 
Newtonian prediction for the velocity of a 1 GeV muon is 
approximately 4.3c. According to relativistic mechanics, 
the higher the energy of a particle, the closer its speed 
approaches c. Thus an observation of the distribution in 
speed of high-energy cosmic-ray muons provides a dra-
matic test of the relation between energy and velocity. 
The experiment consists of a measurement of the differ-
ence in the time of flight of muons between two detectors 
in the form of plastic scintillator “paddles” when they are 
close together and far apart. The 2nd Edition of Melissi-
nos (2003) describes this experiment in some detail [6]. 
The setup is shown in Figure 2. The signal from the 

top detector generates the start pulse for the time-to-
amplitude converter (TAC). The pulse from the bottom 
detector, after an appropriate delay in a long cable, gen-
erates the STOP pulse. A multi-channel analyzer (MCA) 

records the amplitude of the positive output pulse of the 
TAC; that amplitude is proportional to the time interval 
between the input start and stop pulses. The median 
value of this interval for many events changes when the 
bottom detector is moved from the top to the bottom 
position. The change in the median value is a measure 
of the median time of flight of the detected muons and, 
given the distance between the top and bottom positions 
of the bottom paddle, of the median velocity. 

II. MEASURING THE SPEED OF 
COSMIC-RAY MUONS 

II.1. Procedure: Speed of Cosmic-Ray Muons 

Throughout the setup procedure it is essential to use 
the fast (200 MHz) Tektronix oscilloscope to check the 
signs, amplitudes, occurrence rates and timing relation-
ships of the pulses into and out of each component of 
the electronic system. Please note that the BNC inputs 
to the scope are relatively weakly connected to its in-
ternal circuit board and thus are susceptible to damage 
when attaching and removing cables. Short leads have 
been ‘permanently’ attached to the inputs on channels 1 
and 2. Please do not remove the leads, but rather just 
connect your cables to the ends of these ‘pig-tails’. 
Since you are aiming to measure time differences of the 

order of the travel time of light from the ceiling to the 
floor (≈ 10 ns), all the circuits up to the MCA must have 
“rise times” substantially shorter, which means that you 
must use very high sweep speeds on the oscilloscope in 
order to perceive whether things are behaving properly. 
To avoid confusing reflections from the ends of cables, it is 
essential that all cables carrying fast pulses be terminated 
at their outputs by their characteristic impedance of 50Ω, 
either with a terminating plug on a T-connector, or by 
an internal termination at the input of a circuit. 
Check the reasonableness of the arrival rates of single 

pulses by measuring the size of the scintillator and esti-
mate the total rate of muons R traversing it. You can use 
the following empirical formula that provides a good fit 
to measurements of the intensity of penetrating particles 
at sea level as a function of the zenith angle: 

IΩ(φ) = IV cos 2(φ), (8) 

−2 −1where IV = 0.83×10−2 cm s str−1, and φ is the zenith 
angle (Rossi 1948). dN = IΩ(φ)dΩdAdt represents the 
number of particles incident upon an element of area dA 
during the time dt within the element of solid angle dΩ 
from the direction perpendicular to dA. By integrating 
this function over the appropriate solid angle you can es-
timate the expected counting rates of the detectors due 
to the total flux of penetrating particles from all direc-
tions, and the expected rate of coincident counts due to 
particles that arrive within the restricted solid angle de-
fined by the telescope (See Appendix A.) The rates of 



4 Id: 14.muonlifetime.tex,v 1.64 2014/10/17 04:51:44 spatrick Exp 

FIG. 1: (a) Production and decay of pions and muons in a representative high energy interaction of a cosmic-ray 
proton with a neutron in the nucleus of an air atom. (b) Masses and lifetimes of pions and muons. 

© sources unknown. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 

single events and coincidences for τµ are very im- on the order of the expected muon traversal rate. You 
portant calculations and you should not proceed may allow a significant number of noise pulses to pass 
until you have determined these values! the discriminators above the predicted rate, as long as 

the rate of these noise pulses remains small compared to 
Adjust your constant fraction discriminator (CFD) the anticipated muon time of flight. 

thresholds so that the rate of events in each paddle in 

https://ocw.mit.edu/help/faq-fair-use
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FIG. 2: (a) Arrangement for measuring the speed of cosmic-ray muons. 

Adjust the high voltages supplied to the photomul-
tiplier tubes (PMTs) of each of the detectors so that 
the rate of pulses from the discriminators is about 4R 
counts/s, but not more than 1 kHz as checked by the 
scaler. (No more than 1900 V for each PMT; for recom-
mended values check the experiment poster located near 
the experiment.) This will achieve a high detection ef-
ficiency for muon pulses, including those buried in the 
background of events due to local radioactivity. 

Explore the operation of the TAC and the MCA with 
the aid of the time calibrator (TC). The TC produces 
pairs of fast negative pulses separated by multiples of a 
precise interval. When these pulses are fed to the START 
and STOP inputs of the TAC, the TAC produces output 
pulses with amplitudes proportional to the time intervals 
between the input pulses. The amplitudes are measured 
by the MCA. 

With the aid of the TC, set the controls of the TAC 
and MCA so that the calibration of the system is ap-
proximately 20 MCA channels per nanosecond. Test the 
linearity of the time-to-height conversion. Calibrate the 
system so that you can relate accurately the difference 
between the numbers of any two channels on the MCA 
display to a change in the time interval between START 
and STOP pulses at the TAC. Check this calibration by 
adding a known length of 50Ω RG-58 cable just before 
the STOP input at the TAC. 

Now feed the negative gate pulses from CFD1 and 
CFD2 to the start and stop inputs of the TAC, mak-
ing sure you have them in the right order so that the 
stop pulse arrives at the stop input after the start pulse 

arrives at the start input, taking account of both the time 
of flight and the pulse transmission times in the cables. 
Connect the output of the TAC to the input of the MCA 
operating in the PHA mode. Adjust the delays and set 
the controls of the TAC and MCA so that the timing 
events generated by the muons are recorded around the 
middle channel of the MCAs input range. 
Acquire distributions of the time intervals between the 

START and STOP pulses for a variety of paddle po-
sitions. Integration times should range from about 10 
minutes (bottom paddle in its highest position) to about 
45 minutes (bottom paddle in its lowest position). How 
much do you gain by making longer runs? 
Calibrate the time base with the TC. Do not alter any 

of the cabling or electronic settings between any pair of 
top and bottom measurements. Even a small change in 
a high voltage or the triggering level of a discriminator 
can change the timing by enough to introduce a large 
systematic error in a velocity determination. 

II.2. Analysis: Speed of Cosmic-Ray Muons 

Keep in mind the fact that the measured quantities 
are not actual times of flight of muons between the up 
and down positions of the middle detector. Rather, they 
are differences in arrival times of pulses from the top 
and middle detectors generated by flashes of scintillation 
light that have originated in various places within each 
scintillator paddle and have diffused at the speed of light 
in plastic to the photomultiplier window. Each event 
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yields a quantity ti which can be expressed as 

di 
ti = t0 + +Δti, (9) 

vi 

where t0 is a constant of the apparatus, di is the slant 
distance traveled by the ith muon between the top and 
middle detectors, vi is the velocity of the muon, and Δti 
is the error in this particular measurement due to the 
difference in the diffusion times of the scintillation light 
to the two photomultipliers and other instrumental ef-
fects. (In this measurement it is reasonable to assume 
that the systematic error due to the timing calibration 
is negligible. Therefore we can deal directly with the tis 
as the measured quantities rather than with the channel 
numbers of the events registered on the MCA.) Suppose 
we call Tu and Td the mean values of the tis in the up and 
down positions respectively. The simplest assumption is 
that 

D 
ΔT = Td − Tu = , (10) 

v 

where D is the difference in the mean slant distance 
traveled by the muons from the top to the middle paddle 
in the down and up positions, and v is the mean velocity 
of cosmic ray muons at sea level. Implicit in this is the 
assumption that (Δti)av is constant in both the up and 
down positions. Then v can be evaluated as 

D 
v = , (11)

(Td − Tu) 

and the random error can be derived from the error in the 
means (i.e. in Td and Tu) which can be figured according 
to the usual methods of error propagation. (The error of 
a mean is the standard deviation divided by the square 
root of the number of events.) Good statistics are needed 
because of the width of the timing curve. This width is 
of the same order of magnitude as the muon flight time 
in the apparatus for several reasons (you should produce 
estimates of the sizes of each of these effects): 

1. The time of flight between the two counters is given 
by Eq. (10), ΔT = Td − Tu = D/v. The cosmic 
ray muons have a momentum distribution given in 
Figure 11 in Appendix B. Using the experimental 
points in this figure, estimate the dispersion in ΔT 
due to this effect. 

2. The cosmic ray muons have a distribution of angles 
given by Eq. (8). This causes the distribution of 
distribution of flight paths D to differ in the “close” 
and “far” position. Estimate the dispersion in ΔT 
due to this effect. Take into account the dimensions 
of the detectors. 

3. The cosmic ray muons hit the scintillators ap-
proximately uniformly. However, the phototube is 
placed at one end of the scintillator. There is a 
dispersion in the time that a light pulse, created in 

the scintillator from the passage of the muons, hits 
the phototube. Estimate the dispersion in ΔT due 
to this effect, assuming that the index of refraction 
of the scintillator is n ≈ 1.5. 

III. MEASUREMENT OF THE MEAN LIFE OF 
MUONS AT REST 

Muons were the first elementary particles to be found 
unstable, i.e. subject to decay into other particles. At the 
time of Rossi’s pioneering experiments on muon decay, 
the only other “fundamental” particles known were pho-
tons, electrons and their antiparticles (positrons), pro-
tons, neutrons, and neutrinos. Since then dozens of par-
ticles and antiparticles have been discovered, and most of 
them are unstable. In fact, of all the particles that have 
been observed as isolated entities, the only ones that live 
longer than muons are photons, electrons, protons, neu-
trons, neutrinos and their antiparticles. Even neutrons, 
when free, suffer beta (e−) decay with a half life of ∼ 15 
minutes, in the decay process 

− n → p + e + νe. 

Similarly, muons decay through the process 

− µ − → e + νe + νµ 

5 
F m µwith a lifetime of τ−1 = 

G2 

in the Fermi β-decay 192π3 

theory, based on Figure 3(a). This has become better 
understood in the modern electroweak theory where the 
decay is mediated by heavy force carriers W. 

e e 

GF Wµ ν̄e µ νe� �
νµ ν̄µ 

(a) Fermi interaction (b) Emission of a W boson 

FIG. 3: Feynman diagrams of the muon decay process, 
in which the time axis is directed to the right. Figure 
3a represents Fermi’s original theory of interaction, 
while figure 3b reflects a modern understanding of the 
electroweak interaction. Note an arrow to the right 
indicates a particle traveling forward in time, while an 
arrow to the left indicates an antiparticle traveling 

forward in time. 

Muons can serve as clocks with which one can study the 
temporal aspects of kinematics at velocities approaching 
c, where the strange consequences of relativity are en-
countered. Each muon clock, after its creation, yields 
one tick: its decay. The idea of this experiment is, in 
effect, to compare the mean time from the creation event 
to the decay event (i.e. the mean life) of muons at rest 
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with the mean time for muons in motion. Suppose that 
a given muon at rest lasts for a time tb. Equation 5 pre-
dicts that its life in a reference frame (See Figure 3 (a)) 
with respect to which it is moving with velocity v, is γtb, 
i.e. greater than its rest life by the Lorentz factor γ. This 
is the effect called relativistic time dilation. (According 
to relativistic dynamics, γ is the ratio of the total energy 
of a particle to its rest mass energy.) 
In this experiment you will observe the radioactive de-

cay of muons and measure their decay curve (distribu-
tion in lifetime) after they have come to rest in a large 
block of plastic scintillator, and determine their mean life. 
From your previous measurement of the mean velocity of 
cosmic-ray muons at sea level and the known variation 
with altitude of their flux, you can infer a lower limit on 
the mean life of the muons in motion. A comparison of 
the inferred lower limit with the measured mean life at 
rest provides a vivid demonstration of relativistic time 
dilation. During the period from 1940 to 1950, observa-
tions of muons stopped in cloud chambers and nuclear 
emulsions demonstrated that the muon decays into an 
electron and that the energy of the resulting electron, 
may have any value from zero to approximately half the 
rest energy of the muon, namely ≈ 50 MeV. From this it 
was concluded that in addition to an electron the decay 
products must include at least two other particles, both 
neutral and of very small or zero rest mass (why?). The 
decay schemes are shown in Figure (1). 
The experimental arrangement is illustrated in Fig-

ure 5. According to the range-energy relation for muons 
(see Rossi 1952, p40), a muon that comes to rest in 
10 cm of plastic scintillator ([CH2]n with a density of 
≈ 1.2 g/cm3) loses about 50 MeV along its path. The 
average energy deposited by the muon-decay electrons 
in the plastic is about 20 MeV. We want both START 
and STOP pulses for the TAC to be triggered by scin-
tillation pulses large enough to be good candidates for 
muon-stopping and muon-decay events, and well above 
the flood of <1 MeV events caused mostly by gamma 
rays and the “after” pulses that often occur in a photo-
multiplier after a strong pulse. 
The success of the measurement depends critically on a 

proper choice of the discrimination levels set by the com-
bination of the HV and the CFD settings. If they are 
too low, and the rate of accidental coincidences into the 
TAC is correspondingly too high, then the relatively rare 
muon decay events will be lost in a swamp of accidental 
delayed coincidences between random pulses. If the dis-

  

Start

Stop

Delay

Measured by
TAC

Delay

FIG. 4: Arrival times of pulses along the STOP input 
(red) and the START input (green) of the TAC. 

crimination levels are too high, you will miss most of the 
real muon decay events. To arrive at a decision, review 
your prediction of the rate of decay events in the plastic 
cylinder. Estimate the rate of accidental delayed coinci-
dence events in which a random start pulse is followed 
by a random stop pulse within a time interval equal to, 
say, five muon mean lives. You want this rate of acci-
dental events to be small compared to the rate of muon 
stoppings, allowing for reasonable inefficiency in the de-
tection of the muon decay events due to the variability 
of the conditions under which the muons stop and the 
decay electrons are ejected. 
It is important that pulses from the same event do 

not trigger the TAC to both start and stop the timing 
sequence. To avoid this, the pulse from a single event 
to the START input must be delayed by a sufficient 
length of coaxial cable to ensure that the identical pulse 
at the STOP input does not interfere with the timing 
sequence initiated by that same event. In this way the 
first STOP pulse is ignored, whereas the corresponding 
delayed START pulse begins the TAC timing sequence. 
The next pulse at the STOP input (arising from a differ-
ent event) stops the TAC, provided it occurs before the 
end of the TAC timing ramp. See figure 4 for an illus-
tration of the correct timing of the pulses. What effect 
does this necessary delay of the start pulse and the con-
sequent loss of short-lived events have on the mean life 
measurement? 
A potential complication in this measurement is the 

fact that roughly half of the stopped muons are negative, 
and therefore subject to capture in tightly bound orbits 
in the atoms of the scintillator. If the atom is carbon, 
then the probability density inside the atomic nucleus 
for a muon in a 1s state is sufficiently high that nuclear 
absorption can occur by the process (see Rossi, “High 
Energy Particles”, p 186) 

− µ + p → n + ν, (12) 

which competes with decay in destroying the muon. 
(Note the analogy with K-electron capture, which can 
compete with positron emission in the radioactive decay 
of certain nuclei. Here, however, it is the radioactive 
decay of the muon with which the muon capture pro-
cess competes.) The apparent mean life of the negative 
stopped muons is therefore shorter than that of the pos-
itive muons. Consequently, the distribution in duration 
of the decay times of the combined sample of positive 
and negative muons is, in principle, the sum of two ex-
ponentials. Fortunately, the nuclear absorption rate in 
carbon is low, so that its effect on the combined decay 
distribution is small. 

III.1. Why muon decay is so very interesting 

We now know that there are two oppositely charged 
muons and that they decay according to the following 
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FIG. 5: Arrangement for measuring the mean life of muons 

three body decay schemes: 

µ − → e − + ν̄e + νµ (13a) 

+ µ + → e + νe + ν̄µ (13b) 

Rossi’s particle was falsely believed to be the one de-
manded by Yukawa, which in 1947 was found to be the 
pion at 140 MeV. However, the charged pion decays1 into 
muons via 

π− → µ − + ν̄µ, (14) 

a two-body decay! We learned from this the following 
three things: 

1. The existence of a new kind of neutrino, νµ. 
The energies of the decay electron in the pion and 
muon decay schemes look very different: 

Fig. 6 shows schematic spectra: on the left is a 2-
body decay, the right must be a three body decay 
and from the peculiar shape, experts know that the 
third body must have a spin of 1/2. The 1988 Nobel 
Prize in Physics was awarded2 for work in which 
a νµ beam was generated from π decays with all 
muons being swept away by a B field. νµ only 
created muons, never electrons! 

2. Parity Violation. The muons from pion decay 
are polarized anti-parallel to the flight direction 

1 The decay π → e− +ν̄e is of course also possible but is suppressed 
by spin helicity. This is known as “chiral suppression”. 

2 http://nobelprize.org/physics/laureates/1988/index.html 

FIG. 6: Typical energy spectra resulting from two (left 
figure) and three (right figure) body decays. 

and retain their polarization when stopping. The 
number of decay electrons emitted in the forward 
hemisphere of the former flight direction is different 
from the one into the backward hemisphere, thus 
violating parity (here, mirror symmetry). 

3. Muon decay can be calculated exactly. En-
rico Fermi explained all beta decays (a weak in-
teraction) as the decay of neutrons bound differ-
ently in their isotopic nuclei. Free neutrons decay 
slowly (mean lifetime 886 seconds) into a proton, 
an electron, and an electron neutrino. Since this 



9 Id: 14.muonlifetime.tex,v 1.64 2014/10/17 04:51:44 spatrick Exp 

FIG. 7: Schematic of polarized muon decay 
demonstrating parity violation, i.e. 

N(e)UP =6 N(e)DOW N

is governed by weak interactions, all β-decays are 
characterized by the small coupling constant 

GF = 1.16 × 10−5(~c)3/GeV2 . (15) 

This was then superseded by the Electroweak Uni-
fied Theory (GWS, Nobel Prize in 1979), in which 
the interaction is mediated by the 81 GeV W boson. 
This is an enormous energy; according to the uncer-
tainty, this should occur only very seldom, causing 
the “weak” appearance at low energies (� MW ). 
Now we can say 

√ 
2 

GF = 
� gW 

�2 
(~c)3 . (16)

8 MW c2

Comparing the dimensionless constants, gW = 
1/29 � α = 1/137, indicating the weak interac-
tion is stronger than the electromagnetic interac-
tion at high energies. Using the numerical value 
of GF from Equation 15 in Equation 16, the muon 
lifetime can be calculated exactly to be [7] 

192π3~7
τ = . (17)

G2 c4F m
5 
µ

Therefore, since we know GF from beta decays, 
measuring τ allows us to find mµ. 

III.2. Procedure: Measuring the Mean Life of
Muons 

Examine the outputs of the high gain photomultipliers 
with the oscilloscope. Adjust the high voltage supplies so 
that negative pulses with amplitudes of 1 volt or larger 
occur at a rate of the order expected for muon traversals 
(use your own calculations to check this). Do not exceed 
1850 V to keep the noise tolerable. Feed the pulses to 

the coincidence circuit. Examine the output of the coin-
cidence circuit on the oscilloscope with the sweep speed 
set at 1 µs/cm, and be patient. You should occasionally 
see a decay pulse occurring somewhere in the range from 
0 to 4 or so microseconds, and squeezed into a vertical 
line by the slow sweep speed. Now feed the negative out-
put of the coincidence circuit directly to the STOP input 
and through an appropriate length of cable (to achieve 
the necessary delay as explained above) to the START 
input of the TAC. A suitable range setting of the TAC 
is 20.0 µs, obtained with the range control on 0.2 µs and 
the multiplier control on 100. Connect the TAC output 
to the MCA. Verify that most of the events are piling up 
on the left side of the display within a timing interval of 
a few muon lifetimes. Let some events accumulate and 
check that the median lifetime of the accumulated events 
is reasonably close to the half-life of muon. Calibrate the 
setup with the time calibrator. 
Commence your measurement of muon decays. To 

record a sufficient number of events for good statisti-
cal accuracy, you may have to run overnight or over a 
weekend. Be sure to plan your run in conjunction with 
the groups in the other sections to ensure that all have 
an opportunity to obtain muon lifetime measurements. 
When taking an overnight data set, leave a note on the 
experiment with your name, phone number, email and 
what the file is to be saved as. 
If you have recorded a sufficient number of events, say 

several thousand, and if the background counts are a 
small fraction of the muon decay events near t = 0, then 
the pattern on the MCA screen should look like that 
shown in Figure (8). 

FIG. 8: Typical appearance on the MCA of the 
distribution in time of muon decays after about 10 

hours of integration. 

There is a potential pitfall in the analysis. The dis-
tribution in duration of intervals between successive ran-
dom pulses is itself an exponential function of the du-
ration, with a characteristic “decay” time equal to the 
reciprocal of the mean rate. If this characteristic time is 
not much larger than the muon lifetime, then the muon 
decay curve will be distorted and a simple analysis will 
give a wrong result. If the average time between events 
is much larger than the mean decay time, then you may 
assume that the probability of occurrence of such events 
is constant over the short intervals measured in this ex-
periment, provided the triggering level is independent of 
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the time since the last pulse. Under this condition, the 
observed distribution is a sum of a constant plus an ex-
ponential function of the time interval between the start 
and stop pulse. The constant, which is proportional to 
the rate of background events, is the asymptotic value 
of the observed distribution for large values of t. If this 
constant is subtracted from the distribution readout of 
the MCA, then the remainder should fit a simple expo-
nential function, the logarithmic derivative of which is 
the reciprocal of the mean life. 

III.3. Analysis: Calculating the Mean Life of 
Muons 

You can derive a value of the muon mean life by first 
determining the background rate from the data at large 
times and subtracting it from the data. Then plot the 
logarithms of the corrected numbers of counts in succes-
sive equal time bins versus the mean decay time in that 
interval, and fit a straight line. You should also use a 
non-linear fitting algorithm to fit the 3-parameter func-
tion 

(−ti/τ )ni = a e + b (18) 

to your data by adjusting a, b, and τ by the method of 
least squares, i.e. by minimizing the quantity X 

χ2 = (ni − mi)
2/mi, (19) 

where mi is the observed number of events in the ith 

time interval. (Watch out for faulty data in the first few 
tenths of a microsecond due to resolution smearing after 
pulsing of the photomultiplier, and the decay of negative 
muons that suffer loss by nuclear absorption.) Consult 
Melissinos (1966) for advice on error estimation. Finally, 
compare your fit value for b to the expected number of 
“accidentals”. 
Evaluate: 

1. How long does it take a typical high energy cosmic-
ray muon to get to sea level from its point of pro-
duction? What would its survival probability be if 
its life expectancy were the same as that of a muon 
at rest? 

2. Given their observed intensity at sea level, what 
would be the vertical intensity of muons at an alti-
tude of 10 km if all cosmic ray muons were produced 
at altitudes above 10 km and time dilation were not 
true? How does this value compare with the actual 
value measured in balloon experiments? (See Ap-
pendix B for data on the flux versus atmospheric 
depth.) 

3. Calculate a typical value of the Lorentz factor γ at 
production of a muon that makes it to sea level and 
into the plastic scintillator. 

To think about: Suppose your twin engineered for you 
a solo round trip to Alpha Centauri (4 light years away) 
in which you felt a 11.0g acceleration or deceleration all 
the way out and back (could you get out of your seat?). 
How much older would each of you be when you returned? 

POSSIBLE THEORETICAL TOPICS 

1. The special theory of relativity. 

2. Energy loss of charged particles in matter. 

3. Fate of negative muons that stop in matter. 

4. Violation of parity conservation in muon decay. 

Beyond the primary references already cited in the exper-
iment manual, useful secondary references include [8–11]. 
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Appendix A: Properties of the Flux of Cosmic-Ray 
Muons 

The differential flux IV = dN/(dAdtdΩ) of muons in 
the vertical direction (φ=0) is given in Fig. 10 as a func-
tion of atmospheric depth. Sea level is ≈1040 g/cm2 

areal density. There, the momentum distribution from 
the vertical direction peaks at 1 GeV/c (see Fig. 11). 
Each momentum corresponds to a penetration depth, 

or “residual range”. A particularly useful way to charac-
terize the flux of cosmic-ray muons is to specify the differ-
ential distribution or spectrum I(R, φ) of their residual 
ranges which we define so that I(R, φ)dRdΩdA is the 
rate at which muons with residual range (measured in g 
cm−2) between R and R + dR with zenith angle φ in the 
solid angle dΩ cross an area dA perpendicular to their di-
rection. The geometry of this flux is depicted in Figure 9, 
while the flux itself is given for the vertical direction at 
sea level in Figure 12 for light elements (e.g. air, scintil-
lators, etc.). 

φ

δΑ

δΩ = sin φδφδθ

FIG. 9: Differential element of the flux of cosmic-ray 
muons. 

The distributions at other zenith angles can be rep-
resented fairly well by the empirical formula I(R, φ) = 
I(R, 0) cos2(φ) = IV cos

2(φ). Note that the vertical flux 
IV used here is the same quantity which is plotted in Fig-
ure 12, but is different from the similarly named quantity 
discussed in the first paragraph of this section which is 
shown in Figure 10. 
The stopping material in the experiment is a cylinder 

of scintillator plastic. Call its height b, its top area A, 
and its density ρ. Consider an infinitesimal plug of area 
dA in an infinitesimally thin horizontal slice of thickness 
(measured in g/cm2) dR = ρdx of the cylinder. The 
stopping rate of muons arriving from zenith angles near 
φ in dφ in the element of solid angle dΩ in that small 
volume dAdx can be expressed as 

ds = I(R0 , 0) cos2(φ)(cos(φ)dA)(ρdx/ cos(φ))dΩ, (A1) 

where cos(φ)dA is the projected area of the plug in the 
direction of arrival, dx/ cos(φ) is the slant thickness of the 

plug, and R0 is the residual range of muons that arrive 
from the vertical direction with just sufficient energy to 
penetrate through the overlying plastic to the elemental 
volume under consideration. The total rate S of muon 
stoppings in the cylinder can now be expressed as the 
multiple integral 

S = 2πρ 
ZA 

0 

dA 
Zb 

0 

I(R0 , 0)dx 
Zπ/2 

0 

cos 2(φ) sin(φ)dφ (A2) 

in which we have replaced dΩ by 2πsin(φ)dφ under the 
assumption of azimuthal symmetry of the muon inten-
sity. Looking at Figure 12, we see that the muon range 
spectrum is nearly constant out to energies much greater 
than necessary to penetrate the building and the plas-
tic. So we can approximate the quantity I(R0 , 0) by the 
constant I(R, 0). Performing the integrations and call-
ing m = Abρ the mass of the entire cylinder, one readily 
finds for the total rate of muons stopping in the cylinder 
the expression 

2π 
S = mI(Rav, 0). (A3)

3 

Appendix B: Reference Figures: Observed 
Properties of Cosmic-Ray Muons 

Several plots of empirical data concerning cosmic-ray 
muon behavior, for reference purposes. 
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FIG. 10: The vertical intensities of the hard component (H), the soft component (S), and the total corpuscular 
radiation as a function of atmospheric depth near the geomagnetic equator. 
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FIG. 11: Differential momentum spectrum of muons at sea level. The horizontal axis ranges from 102 to 105 MeV/c. 
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FIG. 12: Differential range spectrum of muons at sea level. The range is measured in g·cm−2 of air. The horizontal 
−2axis ranges from 10 to 104 g· cm . 
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Appendix C: Distribution of Decay Times 

The fundamental law of radioactive decay is that an 
unstable particle of a given kind that exists at time t will 
decay during the subsequent infinitesimal interval dt with 
a probability rdt, where r is a constant characteristic of 
the kind of the particle and independent of its age. Call 
P (t) the probability that a given particle that exists at 
t = 0 will survive till t. Then the probability that the 
particle will survive till t + dt is given by the rule for 
compounding probabilities, 

P (t + dt) = P (t)[1 − rdt]. (C1) 

Thus 

dP = −P rdt. (C2) 

Applying the condition that the probability over 0 ≤ t ≤ 
∞ must integrate to 1, the previous equation yields 

P (t) = re −rt . (C3) 

To find the differential distribution of decay times n(t), 
which is the distribution measured in the muon decay 
experiment with the TAC and MCA, we multiply P by 

the rate S at which muons stop in the scintillator, the 
total time T of the run, and the timing resolution per 
counting bin Δt. Thus 

n(t) = (ST )(rΔt)e −rt . (C4) 

Identical reasoning can be applied to the problem of 
finding the distribution in duration of the intervals be-
tween random events that occur at a constant average 
rate s, like the background events in the muon decay ex-
periment. In this case each random event that starts a 
timing operation, in effect, creates an “unstable” interval 
(unto a particle) that terminates (unto a decay) at the 
rate s. Thus the distribution is a function of exactly the 
same form, namely 

m(t) = (sT )(sΔt)e −st , (C5) 

where (sT ) is the expected total number of events in the 
time T . Note that the number of background events is 

2proportional to s . This suggests a limit on how low the 
discriminator can be set in an effort to catch all of the 
muon stopping events. At some point the ratio of muon 
decay events to background events will begin to decrease 

2as s . 
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