Massachusetts Institute of Technology

8.223, Classical Mechanics II

Exercises 3

23. Verify the Virial Theorem for a one dimensional simple harmonic oscillator by direct calculation, i.e. compute $T(t)$ and $U(t)$ and find their averages over one cycle.
24. Compute the cross-section for back-scattering off a fixed impenetrable sphere of radius R (i.e., $U=0$ for $r>R$, and $U=\infty$ for $r \leq R$, and scattering angle $|\theta|>\pi / 2)$.
25. Show that a solution to

$$
\begin{equation*}
\ddot{x}+\omega_{o}^{2} x=\frac{F}{m} \cos (\omega t+\theta) \tag{1}
\end{equation*}
$$

for the case of resonant driving $\left(\omega_{o}=\omega\right)$ is $x(t)=a_{1} \cos \left(\omega_{o} t+\phi\right)+a_{2} t \sin \left(\omega_{o} t+\theta\right)$. Find the constants a_{1} and ϕ for the initial conditions $x(0)=0$ and $\dot{x}(0)=v_{o}$.
26. $(\times 2)$ Small Oscillations: For the system in problem 16 (pset 2), compute the angular frequency ω for small oscillations about (stable) equilibrium.
27. Review of damped undriven and driven one dimensional harmonic oscillators $\mathrm{a} \times 2$) The equation of motion for an undriven harmonic oscillator is

$$
m \ddot{x}=-\lambda \dot{x}-k x .
$$

Use a trial solution $x(t)=e^{-c t}$, substitute in the equation, and show that there are three solutions depending on whether the oscillator is under damped, critically damped or over damped:
i) $x(t)=e^{-\Lambda t}[A \sin \omega t+B \cos \omega t]$
ii) $x(t)=e^{-\Lambda t}[A t+B]$
iii) $x(t)=A e^{\Lambda_{1} t}+B e^{\Lambda_{2} t}$

Find the values of the Λ 's and ω for each case, in terms of m, λ and k. (Note, k is the "spring constant" as in the conservative potential $U(x)=\frac{1}{2} k x^{2}, \lambda$ is the damping coefficient, and m the mass.)
b) A driven damped simple harmonic oscillator obeys the equation

$$
m \ddot{x}=-\lambda \dot{x}-k x+C \sin \omega t
$$

and its solution has the form $x(t)=x_{I}(t)+x_{I I}(t)$ where $x_{I}(t)$ is the transient solution and has the form of the solution in part a). Show that $x_{I I}(t)$, the steady state solution, has the form

$$
x_{I I}(t)=\frac{D}{\sqrt{\left(\omega^{2}-\omega_{o}^{2}\right)^{2}+\Gamma^{2}}} \sin (\omega t+\phi)
$$

and find ω_{o}, D, Γ and ϕ in terms of the constants describing the properties of the oscillator (m, λ and $k)$ and the drive $(C$ and $\omega)$.
28. A driven oscillator is described by

$$
\begin{equation*}
\ddot{x}+\omega_{o}^{2} x=\frac{F}{m} \cos (\gamma t+\alpha) . \tag{2}
\end{equation*}
$$

We found that the solution off resonance is

$$
x(t)=B \cos \left(\omega_{o} t+\beta\right)+\frac{F / m}{\omega_{o}^{2}-\gamma^{2}} \cos (\gamma t+\alpha)
$$

which we can rearrange to

$$
x(t)=C \cos \left(\omega_{o} t+\kappa\right)+\frac{F / m}{\omega_{o}^{2}-\gamma^{2}}\left(\cos (\gamma t+\alpha)-\cos \left(\omega_{o} t+\alpha\right)\right)
$$

with new constants C and κ.
a) If the oscillator is driven close to the natural frequency ω_{o}, we can write $\omega_{o}=\gamma+\epsilon$ with $\epsilon \ll \omega_{o}$. Keeping terms only linear in ϵ (i.e. set any ϵ with higher power to zero), show that we can write

$$
\begin{equation*}
x(t)=C \cos \left(\omega_{o} t+\kappa\right)+\frac{F / m}{2 \omega_{o} \epsilon}\left(\cos \left(\omega_{o} t+\alpha-\epsilon t\right)-\cos \left(\omega_{o} t+\alpha\right)\right) \tag{3}
\end{equation*}
$$

b) Show that this evolves to the on resonance solution (LL 22.5) for $\epsilon \rightarrow 0$. Note: you may carry out the calculation using trigonometric identities or complex notation.
Note: to compare with LL 22.5, convert the above as follows:

$$
C \rightarrow a, \quad F \rightarrow f, \quad \omega_{0} \rightarrow \omega, \quad \kappa \rightarrow \alpha, \quad \alpha \rightarrow \beta
$$

29. $(\times 2)$ Determine the positions of stable equilibrium of a pendulum whose point of support, x_{s}, oscillates horizontally with high frequency: $x_{s}=a \cos (\gamma t)$, with $\gamma \gg \sqrt{g / l}$ (i.e., a horizontal Kapitza pendulum).
30. OPTIONAL: We can write the solution to a simple harmonic oscillator as

$$
\begin{aligned}
x(t) & =x_{o} \cos \omega_{o} t+\frac{v_{o}}{\omega_{o}} \sin \omega_{o} t \\
& =x_{1}\left(t, x_{o}\right)+x_{2}\left(t, v_{o}\right)
\end{aligned}
$$

After a time Δt, the solution will be $x(t+\Delta t)$ which we may write

$$
\begin{aligned}
x_{1}\left(t+\Delta t, x_{o}\right) & =a x_{1}\left(t, x_{o}\right)+b x_{2}\left(t, v_{o}\right) \\
x_{2}\left(t+\Delta t, v_{o}\right) & =c x_{1}\left(t, x_{o}\right)+d x_{2}\left(t, v_{o}\right)
\end{aligned}
$$

Find a, b, c and d.
31. OPTIONAL: We can use a, b, c and d from the previous problem to make the matrix M such that $\vec{x}(t+\Delta t)=M \vec{x}(t)$. Find the eigenvalues of M. Take $\Delta t=4 \pi / \omega_{o}$ and find the eigenvectors.

MIT OpenCourseWare
https://ocw.mit.edu

8.223 Classical Mechanics II

January IAP 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

