## (17) Canonical Transforms

To motivate our next theoretical step, canonical transformations, let's remind ourselves how we use Lagrangians and Hamiltonians to solve mechanics problems. I'll use the simple pendulum as a concrete example

How to do mechanics, step by step

1) Write $T$ and $U$ in Cartesian coordinates

$$
T(\dot{\vec{r}})=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right) \quad, \quad U(\vec{r})=m g y
$$

2) Write transformation to generalized coordinates

$$
\begin{aligned}
\vec{r}(q) \text { e.g. } x & =R \sin \phi, y=-R \cos \phi \\
\dot{\vec{r}}(q, \dot{q}) \text { e.g. } \dot{x} & =R \cos \phi \dot{\phi}, \dot{y}=R \sin \phi \dot{\phi}
\end{aligned}
$$

3) Write $T(q, \dot{q})$ and $U(q)$

$$
T(\phi, \dot{\phi})=\frac{1}{2} m R^{2} \dot{\phi}^{2}, U(\phi)=-m g R \cos \phi
$$

4) Compute generalized momenta

$$
p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}, \text { with } L=T-U \text { e.g. } p_{\phi}=m R^{2} \dot{\phi}
$$

From here, you can continue on the Lagrangian path and...

## Lagrangian

5) Compute $F_{i}=\frac{\partial L}{\partial q_{i}} \quad$ e.g. $F_{\phi}=m g R \sin \phi$
6) Find equations of motion with $\dot{p}_{i}=F_{i} \quad$ e.g. $\ddot{\phi}=\frac{g}{R} \sin \phi$
or you can use these generalized momenta in the Hamiltonian

## Hamiltonian

$$
\text { 5) Write } T(p, q) \quad \text { e.g. } T\left(p_{\phi}, \phi\right)=\frac{p_{\phi}^{2}}{2 m R^{2}}
$$

6) Find equations of motion with $H=T+U$ and

$$
\dot{q}=\frac{\partial H}{\partial p}, \quad \dot{p}=-\frac{\partial H}{\partial q} \text { e.g. } \dot{\phi}=\frac{p_{\phi}}{m R^{2}}, \quad \dot{p}_{\phi}=m g R \sin \phi
$$

It may seem strange that we need to go through the Lagrangian to find the momenta used in the Hamiltonian, but this just highlights a difference between these two approaches.

The Lagrangian is based on a choice of generalized coordinates. Any choice will do, and the momenta are a result of that choice.

$$
L^{\prime}(Q, \dot{Q})=L(q(Q), \dot{q}(Q, \dot{Q}))
$$

for any $Q(q)$ transform (invertable, differentiable,...) e.g. from Cartesian to polar in 2D

$$
\begin{aligned}
Q(q) & \Rightarrow r=\sqrt{x^{2}+y^{2}}, \phi=\tan ^{-1}\left(\frac{y}{x}\right) \\
& \Rightarrow L^{\prime}(r, \phi, \dot{r}, \dot{\phi})=L(x(r, \phi), y(r, \phi), \dot{x}(\ldots), \dot{y}(\ldots))
\end{aligned}
$$

Momenta result from our choice of coordinates

$$
p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}, \quad P_{i}=\frac{\partial L^{\prime}}{\partial \dot{Q}_{i}}
$$

and you plug this into E-L and get the EoM. Easy.
The Hamiltonian, on the other hand, offers no clear connection between $p$ and $q$. You have a lot more freedom in that $q$ need note even be a spatial coordinate, nor $p$ related to the velocity of anything. But, if you forego that freedom and $q$ is a generalized spatial coordinate, then...

Given some generalized coordinates $q_{i}$, the momenta $p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}$ are those required for $H(p, q)$

Does this mean we need to construct $L(q, \dot{q})$ every time we want to change coordinates with $H$ ?

No! There are 3 other ways...
In each case we start with steps 1 and 2.
For the first path, we take step 3 and note that momenta are usually easy to guess (e.g. $\vec{p}=m \dot{\vec{r}}$ ).

Path 1: "guess and check"
Guess your momenta $P(p, q)$

$$
\text { e.g. } p_{\phi}=m R^{2} \dot{\phi}=L_{z}=x p_{y}-y p_{x}
$$

and check the Poisson Brackets (necessary and sufficient)

$$
\begin{aligned}
{\left[Q_{j}, Q_{k}\right]_{p q} } & =0, \quad\left[P_{j}, P_{k}\right]_{p q}=0, \quad\left[P_{j}, Q_{k}\right]_{p q}=\delta_{j k} \\
\text { e.g. }[\phi, \phi] & =\left[\tan ^{-1}\left(\frac{-x}{y}\right), \tan ^{-1}\left(\frac{-x}{y}\right)\right]=0 \\
{\left[p_{\phi}, p_{\phi}\right] } & =0 \quad([f, f]=0 \text { for any } f)
\end{aligned}
$$

$$
\begin{aligned}
{\left[p_{\phi}, \phi\right] } & =\left[x p_{y}-y p_{x}, \tan ^{-1}\left(\frac{x}{y}\right)\right] \\
& =x\left[p_{y}, \tan ^{-1}\left(\frac{-x}{y}\right)\right]-y\left[p_{x}, \tan ^{-1}\left(\frac{-x}{y}\right)\right] \\
& =x \frac{\partial}{\partial y} \tan ^{-1}\left(\frac{-x}{y}\right)-y \frac{\partial}{\partial x} \tan ^{-1}\left(\frac{-x}{y}\right) \\
& =\frac{x^{2}}{R^{2}}+\frac{y^{2}}{R^{2}}=1
\end{aligned}
$$

Of course, we only have one generalized coordinate, $\phi$, in this example. In general, you will have $\frac{3}{2} n(n-1)$ non-trivial PB to compute which give zero, and $n$ of them which give 1 , to perform this check. If $n>2$, you'll need a computer or a free weekend.

## Result:

$$
H=\frac{p_{x}^{2}+p_{y}^{2}}{2 m}+m g y \Rightarrow H^{\prime}=\frac{p_{\phi}^{2}}{2 m R^{2}}-m g R \cos \phi
$$

Paths 2 and 3 are similar and require some back story. Remember that curious fact about Lagrangians that adding the total time derivative of a function doesn't change the equation of motion? (LL eq. 2.8) I promised we would get back to that and here we are.

$$
\begin{aligned}
\text { Recall: } L^{\prime} & =L+\frac{d}{d t} f(q, t) \Rightarrow \text { same EoM } \\
\text { and } L(q, \dot{q}, t) & =L^{\prime}(Q, \dot{Q}, t) \Rightarrow \text { same E-L } \\
\text { and } L & =p \dot{q}-H, L^{\prime}=P \dot{Q}-H^{\prime} \\
\Rightarrow p \dot{q}-H & =P \dot{Q}-H^{\prime}+\frac{d}{d t} F(q, Q, p, P, t)
\end{aligned}
$$

If we limit $F$ to be a function of one old variable ( $p$ or $q$ ) and one new variable ( $P$ or $Q$ ) it is called a "generating function". There are 4 ways we can do this, each with its own implications for the transformation (from $p, q$ to $P, Q$ ) that results. The general rules are

$$
\begin{array}{ll}
\text { for } F_{1}(q, Q) & p_{i}=\frac{\partial F_{1}}{\partial q_{i}}, \quad P_{i}=-\frac{\partial F_{1}}{\partial Q_{i}} \\
\text { for } F_{2}(q, P) & p_{i}=\frac{\partial F_{2}}{\partial q_{i}}, \quad Q_{i}=\frac{\partial F_{2}}{\partial P_{i}}
\end{array}
$$

$$
\begin{array}{ll}
\text { for } F_{3}(p, Q) & q_{i}=-\frac{\partial F_{3}}{\partial p_{i}}, \quad P_{i}=-\frac{\partial F_{3}}{\partial Q_{i}} \\
\text { for } F_{4}(p, P) & q_{i}=-\frac{\partial F_{4}}{\partial p_{i}}, \quad Q_{i}=\frac{\partial F_{4}}{\partial P_{i}}
\end{array}
$$

So, if you want to make a coordinate transform with a Hamiltonian, you either do it through the Lagrangian, you guess and check with Poisson Brackets, or you find a generating function.

Let's do this for our pendulum example. Given a coordinate transform from old to new, we use $F_{2}$

$$
\begin{array}{r}
\text { Given } \vec{Q}(\vec{q}) \text {, use } F_{2}(q, P)=\vec{Q}(\vec{q}) \cdot \vec{P}=\sum Q_{i}(\vec{q}) P_{i} \\
\Rightarrow Q_{i}=\frac{\partial F_{2}}{\partial P_{i}}=Q_{i}(q), \quad p_{i}=\frac{\partial F_{2}}{\partial q_{i}}
\end{array}
$$

## For pendulum

$$
\begin{aligned}
Q(\vec{q}) & \Rightarrow \phi(x, y)=\tan ^{-1}\left(\frac{-x}{y}\right) \\
F_{2}=\vec{Q}(\vec{q}) \cdot \vec{P} & \Rightarrow F_{2}\left(x, y, p_{\phi}\right)=\tan ^{-1}\left(\frac{-x}{y}\right) p_{\phi}
\end{aligned}
$$

This generating function is constructed to make $\frac{\partial F_{2}}{\partial P_{i}}$ trivially give us the desired $Q_{i}$ (point transform). The second differential gives us the new momenta.

$$
\begin{aligned}
& p_{x}=\frac{\partial F_{2}}{\partial x}=p_{\phi} \frac{\partial}{\partial x} \tan ^{-1}\left(\frac{-x}{y}\right)=p_{\phi}\left(\frac{-y}{R^{2}}\right)=p_{\phi} \frac{\cos \phi}{R} \\
& p_{y}=\frac{\partial F_{2}}{\partial y}=p_{\phi} \frac{\partial}{\partial y} \tan ^{-1}\left(\frac{-x}{y}\right)=p_{\phi}\left(\frac{x}{R^{2}}\right)=p_{\phi} \frac{\sin \phi}{R}
\end{aligned}
$$

Since I only have one new momenta and two old, this is over constrained, and both give the same answer. The cartesian momenta are

$$
\begin{aligned}
p_{x} & =m \dot{x}=m R \cos \phi \dot{\phi} \Rightarrow p_{\phi}=m R^{2} \dot{\phi} \\
p_{y} & =m \dot{y}=m R \sin \phi \dot{\phi}
\end{aligned}
$$

where we inverted either expression to get $p_{\phi}$. This matches our guess, so we have $H(p, q)$.

We can also use the $F_{3}$ generator function in a similar way. Again, we trivially recover our point transform, with the first differential equation,

Given $\vec{q}(\vec{Q})$, use $F_{3}(\vec{p}, \vec{Q})=-\vec{q}(\vec{Q}) \cdot \vec{p}$

$$
\Rightarrow q_{i}=-\frac{\partial F_{3}}{\partial p_{i}}=q(\vec{Q}) \quad, \quad P_{i}=-\frac{\partial F_{3}}{\partial Q_{i}}
$$

and the second gives us the new momenta $P$.

## For pendulum

$$
\begin{aligned}
\vec{q}(\vec{Q}) & \rightarrow x=R \sin \phi, y=-R \cos \phi \\
F_{3}\left(p_{x}, p_{y}, \phi\right) & =-R \sin \phi p_{x}+R \cos \phi p_{y}
\end{aligned}
$$

$$
\begin{aligned}
p_{\phi} & =-\frac{\partial F_{3}}{\partial \phi}=R\left(\cos \phi p_{x}+\sin \phi p_{y}\right) \\
& =R(\cos \phi(m \dot{x})+\sin \phi(m \dot{y})) \\
& =m R(\cos \phi(R \cos \phi \dot{\phi})+\sin \phi(R \sin \phi \dot{\phi})) \\
& =m R^{2} \dot{\phi}
\end{aligned}
$$

For our example, in which the coordinate transform is most easily expressed as $\vec{q}(\vec{Q})$, this path through $F_{3}$ is the most direct way to go from step 2 to step 5
without passing through $L$ (at the price of needing to invert $P_{i}=f(\vec{p}, \vec{q})$ ).
Of course, we have explored only a very limited range of generator functions. These needn't result in point transforms; the Hamiltonian is not limited like the Lagrangian to point transforms $Q(q) \Rightarrow \dot{Q}(q, \dot{q})$. Rather, you can have $Q(p, q)$ and $P(p, q)$.

For instance, let's try this...

$$
\begin{aligned}
& \text { Transform } H \text { from } \phi, p_{\phi} \\
& \qquad \begin{aligned}
H\left(p_{\phi}, \phi\right)= & \frac{p_{\phi}^{2}}{2 m R^{2}}-m g R \cos \phi \\
\simeq & \frac{p_{\phi}^{2}}{2 I}+\frac{k}{2} \phi^{2}+\mathrm{const} \quad \text { for } \phi \ll 1 \\
& \quad I=m R^{2}, k=m g R=\frac{g I}{R}=I \omega^{2} .
\end{aligned}
\end{aligned}
$$

Dropping the constant gives us the Hamiltonian of a simple harmonic oscillator with frequency $\omega=\sqrt{\frac{g}{R}}$.

$$
\text { try } \begin{aligned}
F_{1}(\phi, \theta) & =\frac{I \omega \phi^{2}}{2 \tan \theta} \text { with } \omega=\sqrt{\frac{g}{R}} \\
p_{\phi} & =\frac{\partial F_{1}}{\partial \phi}=\frac{I \omega \phi}{\tan \theta} \\
\Rightarrow \tan \theta & =\frac{I \omega \phi}{p_{\phi}} \\
p_{\theta} & =-\frac{\partial F_{1}}{\partial \theta}=\frac{I \omega \phi^{2}}{2} \frac{\partial}{\partial \theta} \frac{-1}{\tan \theta}=\frac{I \omega \phi^{2}}{2 \sin ^{2} \theta}
\end{aligned}
$$

Now we need to write $H\left(p_{\theta}, \theta\right)$ based on $H\left(p_{\phi}, \phi\right)$, just like we got $H\left(p_{\phi}, \phi\right)$ from $H$ in cartesian coordinates.

Find $H\left(p_{\theta}, \theta\right)$

$$
\begin{aligned}
H\left(p_{\theta}, \theta\right)= & \frac{p_{\phi}^{2}}{2 I}+\frac{I \omega^{2}}{2} \phi^{2}=\frac{I \omega^{2} \phi^{2}}{2 \tan ^{2} \theta}+\frac{I \omega^{2} \phi^{2}}{2} \\
\text { use } & \frac{1}{\tan ^{2} \theta}+1=\frac{1}{\sin ^{2} \theta} \Rightarrow H=\omega p_{\theta}
\end{aligned}
$$

Now that is a simple Hamiltonian!

## EoM for $\theta$

$$
\begin{aligned}
& \dot{\theta}=\frac{\partial H}{\partial p_{\theta}}=\omega, \dot{p}_{\theta}=-\frac{\partial H}{\partial \theta}=0 \\
& \theta=\omega t+\theta_{0}, p_{\theta}=\mathrm{const}
\end{aligned}
$$

What does this mean physically? Let's return to our angular coordinate $\phi$;

$$
\begin{aligned}
\phi & =\sqrt{\frac{2 p_{\theta}}{I \omega}} \sin \left(\omega t+\theta_{0}\right) \\
p_{\phi} & =\sqrt{2 p_{\theta} I \omega} \cos \left(\omega t+\theta_{0}\right) \\
\mathrm{SHO}: & E=\frac{1}{2} I \omega^{2} A^{2} \Rightarrow p_{\theta}=\frac{E}{\omega}
\end{aligned}
$$

so $\theta$ is the phase of the oscillator, and $p_{\theta}$ is related to the energy of the oscillation. (Note that $H=E$ as expected.)

So this generator function moved us into a "cordinate" system where our "momentum" was actually energy (a constant) and "position" was actually the phase of the harmonic oscillator solution!

## This would not work with a Lagrangian!

MIT OpenCourseWare
https://ocw.mit.edu

### 8.223 Classical Mechanics II <br> January IAP 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

