Lecture (3)

Today:

- Principle of Least Action
- Euler-Lagrange Equations

For tomorrow

1. read LL 1-5 again (really!)
2. do pset problems 7-9

1 Principle of Least Action (PLA)

```
Principle of Least Action (PLA):
for some L(q,\dot{q},t), the motion of a system minimizes
S= \int}\mp@subsup{\int}{\mp@subsup{t}{1}{}}{\mp@subsup{t}{2}{}}Ldt\mathrm{ , where S = "action"
for a given q(t) and q(t2)
```

S is the action, and L is the Lagrangian. In the most general case L need not be $T-U$. But in most interesting cases, $L=T-U$.

Let's look at some simple examples.

Free Particle in 1D

$$
\Rightarrow U=0 \Rightarrow L=\frac{1}{2} m \dot{q}^{2}
$$

The PLA is not like Newtonian thinking. You assume that you KNOW THE END POINTS, and ask what happened in between. With $F=m a$, you assume you know the initial position AND VELOCITY, and then move forward in time.

For the PLA any trial path is valid. The one with minimal S is the true path. For this example, I'll consider parabolic paths.

Constant Velocity Path

$$
\begin{array}{r}
t_{1}=0, q\left(t_{1}\right)=q_{1}=0 \\
q(t)=a t+b t^{2}, q\left(t_{2}\right)=q_{2}=a t_{2}+b t_{2}^{2} \\
\Rightarrow a=\frac{q_{2}}{t_{2}}-b t_{2}=v_{2}-b t_{2} \\
\text { where } v_{2}=\frac{q_{2}}{t_{2}}
\end{array}
$$

This leaves us b as a free parameter which we can adjust to find the path with minimum action.

$$
\begin{array}{r}
\qquad S=\int_{0}^{t_{2}} \frac{1}{2} m \dot{q}^{2} d t, \dot{q}=a+2 b t \\
\text { Mathematica! } \Rightarrow S=\frac{1}{2} m t_{2}\left(v_{2}^{2}+\frac{b^{2} t_{2}^{2}}{3}\right) \\
\text { minimum at } b=0
\end{array}
$$

So, free particles move at constant velocity. Newton's 1st Law! Inertia! (not really a surprise, I guess...)
Let's try again, but this time with a simple potential.

Simple Potential

$$
\begin{array}{r}
U=m g q \Rightarrow L=\frac{1}{2} m \dot{q}^{2}-m g q \\
\Rightarrow S=m \int_{0}^{t_{2}} \frac{1}{2}(a+2 b t)^{2}-g\left(a t+b t^{2}\right) d t \\
\Rightarrow S=\frac{1}{2} m t_{2}\left(v_{2}\left(v_{2}-g t_{2}\right)+\frac{1}{3} t_{2}^{2}\left(b^{2}+b g\right)\right) \\
\frac{\partial S}{\partial b}=0 \Rightarrow 2 b+g=0 \Rightarrow b=-\frac{g}{2}
\end{array}
$$

So we found the parabolic path with minimum action to be the one you would expect from 8.01.

$$
\begin{array}{r}
a=v_{2}-b t_{2}=v_{2}+\frac{g t_{2}}{2}=\dot{q}(t=0)=v_{0} \\
q(t)=v_{0} t-\frac{1}{2} g t^{2}
\end{array}
$$

The initial velocity is just what a projectile needs to fly a distance q_{2} in time t_{2} with acceleration g .
\Rightarrow Projectile motion results from PLA!
Of course the PLA does't say anything about parabolic paths. Any trial path will do! How do you know the true path?

The trick is to assume you know the path and then show you are correct by trying to adjust it. (This comes from from the Calculus of Variations, see Marion \& Thornton chapter 5 for more info.)

$$
\begin{array}{r}
S^{\prime}=\int_{t_{1}}^{t_{2}} L\left(q^{\prime}, \dot{q}^{\prime}, t\right) d t \\
\text { with } \underbrace{q^{\prime}(t)}_{\text {trial path }}=\underbrace{q(t)}_{\text {true path pat }}+\underbrace{\eta(t)}_{\text {deviation }}, \Rightarrow \dot{q}^{\prime}=\dot{q}+\dot{\eta} \\
q^{\prime}\left(t_{1}\right)=q\left(t_{1}\right) \Rightarrow \eta\left(t_{1}\right)=0 \\
q^{\prime}\left(t_{2}\right)=q\left(t_{2}\right) \Rightarrow \eta\left(t_{2}\right)=0
\end{array}
$$

PLA says $S^{\prime} \approx S$ for small η (first order)

$$
\begin{aligned}
S^{\prime}-S & =\int_{t_{1}}^{t_{2}} \underbrace{L\left(q^{\prime}, \dot{q}^{\prime}, t\right)-L(q, \dot{q}, t)}_{\delta L} d t \\
L\left(q^{\prime}, \dot{q}^{\prime}, t\right) & \approx L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \eta+\frac{\partial L}{\partial \dot{q}} \dot{\eta} \\
\Rightarrow S^{\prime}-S & \approx \int_{t_{1}}^{t_{2}}\left(\frac{\partial L}{\partial q} \eta+\frac{\partial L}{\partial \dot{q}} \dot{\eta}\right) d t \\
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}} \eta\right) & =\eta \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)+\frac{\partial L}{\partial \dot{q}} \dot{\eta} \\
\Rightarrow S^{\prime}-S & \approx \int_{t_{1}}^{t_{2}} \eta\left(\frac{\partial L}{\partial q}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)\right) d t+\underbrace{\int_{t_{1}}^{t_{2}} \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}} \eta\right) d t}_{\frac{\partial L}{\partial \dot{q}} \eta \eta_{t_{1}}^{t_{1}}=0} \\
\text { since } \eta\left(t_{1}\right) & =\eta\left(t_{2}\right)=0
\end{aligned}
$$

We are looking for a true path with $S^{\prime}-S=0$ for any small deviation $\eta(t)$.

$$
\begin{array}{r}
S^{\prime}-S=\int_{t_{1}}^{t_{2}} \eta\left(\frac{\partial L}{\partial q}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)\right) d t=0 \\
\quad \Rightarrow \frac{\partial L}{\partial q}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)=0, \text { Euler any } \eta
\end{array}
$$

And thus we see that the true path must be a solution to the E-L equation! (It is not an accident that this is also the generalization that worked in yesterday's lecture.)

The PLA gives us N second order ODEs for a system with N DOFs. To find the path of our system through our generalized coordinate space, we should provide 2 N initial conditions, and solve N 2 nd order ODEs. (Mostly, we will keep to $\mathrm{N} \in$ \{1,2,3\}).

A note about notation: Generally I will write q without the subscript i (as noted yesterday). You can think of this as the 1D case. If you want the ND case, just add i to all of the q 's and \dot{q} 's. If the expression does not have i as a free index, sum over it. For example, the Euler Lagrange Equation

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)=\frac{\partial L}{\partial q} & \rightarrow \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)=\frac{\partial L}{\partial q_{i}} \\
\text { or } T=\frac{1}{2} m \dot{q}^{2} & \rightarrow T=\frac{1}{2} m \sum \dot{q}_{i}^{2} \\
\text { or } \frac{d}{d t} f(q, t)=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial q} \dot{q} & \rightarrow \frac{d}{d t} f=\frac{\partial f}{\partial t}+\sum \frac{\partial f}{\partial q_{i}} \dot{q}_{i}
\end{aligned}
$$

(Similar to Einstein summation notation). The same is true for multiple particles:

$$
T=\frac{1}{2} m \dot{q}^{2} \Rightarrow T=\frac{1}{2} \sum_{n} m_{n} \sum_{i_{n}} \dot{q}_{i_{n}}^{2}
$$

I will try to avoid the index jungle as much as possible by sticking to 1 particle in 1 D when writing equations.

NB:

$$
\begin{aligned}
\vec{q} & \equiv\left\{q_{i} \forall i\right\} \equiv q \\
\text { e.g. } \vec{r} & =\{x, y, z\} \text { or }\{r, \phi, \theta\}
\end{aligned}
$$

2 Generalized Forces and Momenta

Briefly, here is how we get $F=m a$ from E-L

$$
\begin{aligned}
\text { if } L & =\frac{1}{2} m \dot{q}^{2}-U(q) \\
F_{i} & \equiv \frac{\partial L}{\partial q_{i}}=-\frac{\partial U}{\partial q_{i}} \text { since } T \text { not a function of } q \\
\dot{p}_{i} & \equiv \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)=\frac{d}{d t}\left(m \dot{q}_{i}\right) \text { since } U \text { not a function of } \dot{q} \\
\text { E-L } \frac{\partial L}{\partial q} & =\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \Rightarrow \vec{F}=\dot{\vec{p}} \text { (i.e. Newton) }
\end{aligned}
$$

So, while $F=m a$ gets tricky when these conditions are not met, E-L just works; the PLA just got us a very general form of Newton's second law. As such, we will need to give names to the generalizations are of force and momentum that we are used to. They are:

$$
\begin{gathered}
F_{i} \equiv \text { generalized force for coordinate } q_{i} \\
p_{i} \equiv \text { generalized momentum for velocity } \dot{q}_{i}
\end{gathered}
$$

Note that the units associated with these generalized forces and momenta may not be what you expect.

Units

$$
\begin{aligned}
& {[U]=\text { energy }=\mathrm{J}=\frac{\mathrm{kg} \mathrm{~m}^{2}}{\mathrm{~s}^{2}}} \\
& {\left[F_{i}\right]=\frac{\text { energy }}{\left[q_{i}\right]} \text { e.g. } \frac{\mathrm{kg} \mathrm{~m}}{\mathrm{~s}^{2}} \text { if }\left[q_{i}\right]=\text { meters }} \\
& {\left[p_{i}\right]=\frac{\text { energy } \times \text { time }}{\left[q_{i}\right]} \text { e.g. } \frac{\mathrm{kg} \mathrm{~m}}{\mathrm{~s}} \text { if }\left[q_{i}\right]=\text { meters }}
\end{aligned}
$$

However, since the units of q_{i} could be anything (e.q. unitless for angles in spherical coordinates) the units of F_{i} and p_{i} may be unusual.

3 Math Review

Before we go on to more physics, let's review our mathematical tools.

Chain Rule

$$
\frac{\mathrm{d}}{\mathrm{~d} x} f(a, b)=\left(\frac{\mathrm{d} a}{\mathrm{~d} x}\right)\left(\frac{\partial f}{\partial a}\right)+\left(\frac{\mathrm{d} b}{\mathrm{~d} x}\right)\left(\frac{\partial f}{\partial b}\right)
$$

Total Derivative

$$
\frac{\mathrm{d}}{\mathrm{~d} t} f(q, \dot{q}, t)=\frac{\partial f}{\partial t}+\dot{q} \frac{\partial f}{\partial q}+\ddot{q} \frac{\partial f}{\partial \dot{q}}
$$

Product Rule

$$
b \frac{\mathrm{~d} a}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{~d} x}(a b)-a \frac{\mathrm{~d} b}{\mathrm{~d} x}
$$

Integration by Parts

$$
\int_{x_{1}}^{x_{2}} b \frac{\mathrm{~d} a}{\mathrm{~d} x} d x=\left.a b\right|_{x_{1}} ^{x_{2}}-\int_{x_{1}}^{x_{2}} a \frac{\mathrm{~d} b}{\mathrm{~d} x} d x
$$

We will have q and \dot{q} as the only implicit functions of time (i.e. we don't know q and \dot{q} until we solve the equations of motion). We will also generally only have total TIME derivatives. All other are "easy" partial derivatives like $\frac{\partial}{\partial q}$ or $\frac{\partial}{\partial \dot{q}}$.

$$
\text { NB: } \dot{q}=\frac{\mathrm{d}}{\mathrm{~d} t} q(t)=\frac{\partial}{\partial t} q(t)
$$

4 Lagrangian Workflow

The general workflow for solving problems with Lagrangian Mechanics is:

Lagrangian Workflow:

1. pick generalized coordinates

2. determine $L(q, \dot{q}, t)$
3. compute F_{i} and \dot{p}_{i} to find EoM

Finding $L(q, \dot{q}, t)$ requires $T(q, \dot{q})$ and $U(q, t)$
Usually $U(q, t)$ is given. What about $T(q, \dot{q})$?
The Lagrangian formalism is very powerful in that we can pick any coordinate we like, but there is a price to pay: the kinetic energy is complicated.

Kinetic Energy

$$
\begin{aligned}
T & =\frac{1}{2} m \sum_{j, k} a_{j k} \dot{q}_{j} \dot{q}_{k}, \text { for each particle } \\
\text { where } a_{j k} & =\sum_{i} \frac{\partial r_{i}}{\partial q_{j}} \frac{\partial r_{i}}{\partial q_{k}}, \vec{r}=\{x, y, z\}
\end{aligned}
$$

Note that we rely on Cartesian coordinates \vec{r} to find the $a_{j k}$ coefficients (see also Marion \& Thornton chapter 6.8, but beware of notational differences).

$$
\begin{aligned}
\text { if } \vec{q} & =\{x, y, z\} \\
a_{x x} & =\left(\frac{\partial x}{\partial x}\right)^{2}+\left(\frac{\partial y}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial x}\right)^{2}=1 \\
a_{x y} & =\frac{\partial x}{\partial x} \frac{\partial x}{\partial y}+\frac{\partial y}{\partial x} \frac{\partial y}{\partial y}+\frac{\partial z}{\partial x} \frac{\partial z}{\partial y}=0 \\
\Rightarrow T & =\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)
\end{aligned}
$$

In Cartesian coordinates this is nothing special, but in others it is tricky. See LL 4.4-4.6.

Let's work through an example to show how all of this machinery works. I will just do 2 D projectile motion (e.g. $m g h$ potential), but I will make the unforgivable mistake of using polar coordinates. This will demonstrate the full process in detail, and the value of picking the right coordinates!

2D Projectile Motion

$$
\begin{aligned}
\vec{q} & =\{r, \phi\} \\
x & =r \cos \phi, y=r \sin \phi \\
U & =m g y=m g r \sin \phi \\
\frac{\partial x}{\partial r} & =\cos \phi, \frac{\partial y}{\partial r}=\sin \phi \\
\frac{\partial x}{\partial \phi} & =-r \sin \phi, \frac{\partial y}{\partial \phi}=r \cos \phi
\end{aligned}
$$

In Cartesian Coordinates

$$
\begin{aligned}
& T= \frac{1}{2} m\left(\left(\frac{\partial x}{\partial r}\right)^{2}\left(\frac{\partial y}{\partial r}\right)^{2}\right) \dot{r}^{2}+ \\
&\left.2\left(\frac{\partial x}{\partial r} \frac{\partial x}{\partial \phi}+\frac{\partial y}{\partial r} \frac{\partial y}{\partial \phi}\right) \dot{r} \dot{\phi}+\left(\left(\frac{\partial x}{\partial \phi}\right)^{2}+\left(\frac{\partial y}{\partial \phi}\right)^{2}\right) \dot{\phi}^{2}\right) \\
& T= \frac{1}{2} m\left(\left(\cos ^{2} \phi+\sin ^{2} \phi\right) \dot{r}^{2}+\right. \\
& 2(-r \cos \phi \sin \phi+r \sin \phi \cos \phi) \dot{r} \dot{\phi}+ \\
&\left.\quad\left(r^{2} \sin ^{2} \phi+r^{2} \cos ^{2} \phi\right) \dot{\phi}^{2}\right) \\
& T= \frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)
\end{aligned}
$$

now we have kinetic energy in 2D polar coordinates

$$
\begin{aligned}
L & =T-U \\
& =\frac{1}{2}\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)-m g r \sin \phi
\end{aligned}
$$

from there we find our generalized forces

"Forces"

$$
\begin{gathered}
F_{r}=\frac{\partial L}{\partial r}=r \dot{\phi}^{2}-m g \sin \phi\left[\frac{\mathrm{~kg} \mathrm{~m}}{\mathrm{~s}^{2}}\right] \text { force } \\
F_{\phi}=\frac{\partial L}{\partial \phi}=-m g r \cos \phi\left[\frac{\mathrm{~kg} \mathrm{~m}^{2}}{\mathrm{~s}^{2}}\right] \text { torque }
\end{gathered}
$$

and generalized momenta

$$
\begin{aligned}
& \text { "Momenta" } \\
& p_{r}=\frac{\partial L}{\partial \dot{r}}=m \dot{r}\left[\frac{\mathrm{~kg} \mathrm{~m}}{\mathrm{~s}}\right] \text { mass x velocity } \\
& p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=m r^{2} \dot{\phi}\left[\frac{\mathrm{~kg} \mathrm{~m}^{2}}{\mathrm{~s}}\right] \text { moment of inertia } \mathrm{x} \text { angular velocity }
\end{aligned}
$$

finally, the EoM.

Equations of Motion

$$
\begin{array}{r}
F_{r}=\dot{p}_{r} \Rightarrow r \dot{\phi}^{2}-m g \sin \phi=m \ddot{r} \\
\Rightarrow \ddot{r}+g \sin \phi=0 \\
F_{\phi}=\dot{p}_{\phi} \Rightarrow-m g r \cos \phi=m \frac{\mathrm{~d}}{\mathrm{~d} t} \\
\Rightarrow r^{2} \ddot{\phi}+2 r \dot{r} \dot{\phi}+g r \cos \phi=0
\end{array}
$$

We'll stop here with this example. Clearly, picking coordinates wisely is critical!

$$
\text { Note: you can use } T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right) \text { and compute } \dot{x}(q, \dot{q}), \ldots
$$

In our example, this would be

$$
T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)=\frac{1}{2} m\left(\left(\frac{d}{d t}(r \cos \phi)\right)^{2}+\left(\frac{d}{d t}(r \sin \phi)\right)^{2}\right)
$$

Here is the proof:

$$
\begin{array}{r}
T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right) \\
x=x(q) \Rightarrow \dot{x}=\sum \frac{\partial x}{\partial q_{i}} \dot{q}_{i} \\
\Rightarrow \dot{x}^{2}=\left(\sum_{j} \frac{\partial x}{\partial q_{j}} \dot{q}_{j}\right) \times\left(\sum_{k} \frac{\partial x}{\partial q_{k}} \dot{q}_{k}\right) \\
=\sum_{j k} \frac{\partial x}{\partial q_{j}} \frac{\partial x}{\partial q_{k}} \dot{q}_{j} \dot{q}_{k}
\end{array}
$$

now sum over x, y, z to get all terms with $\dot{q}_{j} \dot{q}_{k}$

$$
\begin{aligned}
\Rightarrow T & =\frac{1}{2} m \sum_{j k} a_{j k} \dot{q}_{j} \dot{q}_{k} \\
a_{j k} & =\sum_{i \in x, y, z} \frac{\partial r_{i}}{\partial q_{j}} \frac{\partial r_{i}}{\partial q_{k}}
\end{aligned}
$$

When do we get terms with $a_{j k} \neq 0$ for $\mathrm{j} \neq \mathrm{k}$? ("off-diagonal" terms)

$$
\begin{array}{r}
q_{1}=x, q_{2}=x+y \\
\Rightarrow a_{12}=\frac{\partial x}{\partial q_{1}} \frac{\partial x}{\partial q_{2}}+\frac{\partial y}{\partial q_{1}} \frac{\partial y}{\partial q_{2}}=1+0=1
\end{array}
$$

MIT OpenCourseWare
https://ocw.mit.edu

8.223 Classical Mechanics II
 January IAP 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

