
    (13) Dissipation and Damped Oscillators 

1 Dissipation 

We’ve been trying to ignore it, but in the real world there is friction. Friction 
means that mechanical energy is converted to thermal energy, and we no longer 
have a ‘conservative’ system. But we can try. 

Rather than just start with a damped oscillation (as in eqn 25.1 in LL), I will 
motivate a modified Euler-Lagrange equation which includes dissipation, and then 
use this to arrive at damped oscillations. 

Imagine some fraction of kinetic energy is couple to thermal energy per unit 
time �. 
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Generalizing �T to any velocity dependent function, 
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∂L where ∂q is the conservative force, and bq̇ is the dissipative force. 
Damped systems lose energy with time until they come to rest. The rate of 

energy loss is given by the dissipation function. � � 
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normally zero, but... 
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Note that the last line is just the rate of work done by friction as force × velocity. 
All of this is assuming no external driving force (i.e., ∂L = 0).∂t 

2 Damped Oscillator 

Let’s put this to work on our harmonic oscillator to make a more realistic damped 
oscillator. 
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the equations of motion are 

mẍ = −kx − b ̇x, ω2 
0 = 

k 
m 

or 
ẍ + 2λ ̇x + ω2 

0x = 0, 2λ = 
b 
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This differential equation is best solved with complex exponentials, but the solution 
can be written in real form as 

“under damped” 

x (t) = ae −λt cos (ω1t + φ) for λ < ω0 q
where ω1 = ω2 − λ2 

0 

“over damped” 

x (t) = e −λt 
� 
a1e βt + a2e −βt 
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q
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0, note β < λ ⇒ decay 
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“critically damped” 
−λt (a1 + a2t)x (t) = e for λ = ω0 

To complete the picture, we should add a driving force to our damped oscillator. 
Returning to the equation of motion... 

F (t) f ẍ+ 2λẋ+ ω0
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⇒ x (t) = a1e−λt cos (ω0t + φ) + a2 cos (ωt + θ) 
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where a1 and φ come from the initial conditions 
Again, the driven solution has 2 parts, one that depends on the initial conditions 

and another which is the response to the drive. With damping, we see that the first 
1of these decays with time, such that the motion at t � is essentially only the λ 

driven response. 
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x (t) ' a2 cos (ωt + θ) for t � (1)

λ 
x (t) a2→ = (2)
F (t) f 

Transfer Functions 
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