
Lecture (2) 

Today: 

• Generalized Coordinates 

• Principle of Least Action 

For tomorrow 

1. read LL 1-5 (only a few pages!) 

2. do pset problems 4-6 

1 Generalized Coordinates 

The first step in almost any mechanics problem is a choice of coordinates with 
which to describe the motion of our system. 

Cartesian Coordinates 
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~r = x xb+ y yb+ z zb
where b y, bx, b z are direction unit vectors. 

in 3D, we need 3 parameters. 

Cylindrical Coordinates 

p
ρ = x2 + y2 

cos φ = x , sin φ = y 

~r = ρ ρb+ z zb
note: ρb and φb depend on φ 
⇒ ~r = ρ ρb(φ) + z zb

where ρb(φ) = ρ cos φxb+ ρ sin φ yb
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Spherical Coordinates 

~r = r rb
rb = sin θ(cos φxb+ sin φ yb) + cos θ zbbθ = cos θ(cos φxb+ sin φ yb) − sin θ zbbφ = − sin φxb+ cos φ yb

So no matter how you do it, you need 3 coordinates for each particle in 3D. 
In our simple example problem, we worked with 2 masses in 2D. 
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2 masses in 2D 
⇒ 4 “Degrees of Freedom” or DOF 

add 2 constraints (string, ramp) 
⇒ 2 DOF remain 

Fx2 = 0, so this DOF is uninteresting 
⇒ 1 DOF problem (coordinate r) 

So to describe the motion of this system we need only one “coordinate”. I did 
this with a parameter called r (I tried d at first but ∂T looked bad!) ∂d 

In the above example, we defined a coordinate r which made sense for that 
problem, but we did it in a creative and ill defined way... it is just what seemed to 
work. In order to give us a general way to talk about the coordinates with which 
we describe a system, we will define notation for “Generalized Coordinates”. 

Generalized Coordinates � 
for N DOFs we use q1, q2, ..., qN 

dtime derivatives are q̇i = qidt 
Coordinates of a particle are implicit functions of time. We 
are looking for qi(t). 

I say “implicit” because we don’t know the functional form until we find and 
solve the equations of motion. This is as opposed to an explicit time dependence, 
like an oscillating driving force. 

Generalized coordinates needn’t be orthogonal, they just need to specify the 
positions of all particles completely and they should be continuously differentiable 
(aka “smooth”). 

System State 
Completely specified by qi and q̇i at any time t. 
Initial state q(t = 0) and q̇(t = 0) 
evolve with F (q, q̇) = mq̈ (equation of motion). 

Questions about generalized coordinates? � 
Note: q without subscript means ~q = qi∀i , so 1 DOF and N DOF look the same. 
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2 Generalization, Take 2 

Now with generalized coordinates as a well defined concept, we return to where 
we left off yesterday; generalizing F = ma. First, the generalization you did in 
8.01: 

Generalizing F = ma 
~ ˙explicit form F (~r, ~r, t) 

~ d ˙let m vary F = (m(t)~̇r)= p~dt 

conservative force? F~ = −rU = p~̇

And the generalization we did yesterday, which went a little further: � � 
d ∂T 1 2 ṗ = , T = mq̇
dt ∂q̇ 2� � 

∂U d ∂T ⇒ − = 
∂q dt ∂q̇ 

This was tricky, but it worked! 
How do we know that a particular generalization is the RIGHT generalization? 

It’s right if it lets us solve more complicated problems with ease (i.e. we use F = ṗ
for rockets with m(t)). 

Let’s try a slightly more complicated version of the ramp with two masses... 
we’ll let the hanging mass swing. 

as before, but we start with θ2 6= 0. This means that we now have a 2 DoF system. 
We’ll try to find the EoM first this with a simple F = ma approach: 
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FBD for m2 

~ b bF2 · θ2 τ2 r2(F~2 · θ2)¨ ¨ r2θ2 = or θ2 = = 2m2 I2 r2m2 

−g sin θ2¨ θ2 = EoM for θ2 
r2 

~F2 · rb2 cos θ2m2g − Ts 
r̈2 = = 

m2 m2 

Using the string tension from lecture 1, 

m1m2
Ts = g(cos θ2 + sin θ) 

m1 + m2 

we can get 

m1 
r̈2 = g(cos θ2 − (cos θ2 + sin θ1)) 

m1 + m2 

= 
g 

(m2 cos θ2 − m1 sin θ1) EoM for r2 
m1 + m2 

BOTH ARE WRONG! since rb2(θ2) and θb2(θ2) 
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try Cartesian coordinates for m2 

Find EoM for x and y 

m2 ẍ2 = −Ts sin θ2 , m2 ÿ2 = m2g − Ts cos θ2 

y2 = r2 cos θ2 

⇒ ÿ2 = 
d 
dt
( ṙ2 cos θ2 − r2θ̇2 sin θ2) 

= r̈2 cos θ2 − 2 ṙ2θ̇2 sin θ2 − r2( ̈  θ2 sin θ2 + θ̇2 
2 
cos θ2) 

x2 = r2 sin θ2 

⇒ ẍ2 = r̈2 sin θ2 + 2 ṙ2θ̇2 cos θ2 + r2( ̈  θ2 cos θ2 − θ̇2 
2 
sin θ2) 

returning to Equation of Motion for r2 and θ2 

m2(r̈2 sin θ2 + ...) = −Ts sin θ2 

m2(r̈2 cos θ2 − ...) = m2g − Ts cos θ2 

recall m1r̈1 = Ts − m1g sin θ1, r̈1 = r̈2 

now we have everything in terms of r2 and θ2, we just need to solve! Ack! 
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⇒ Mathematica! ⇐ 
g m2 2 

r̈2 = (m2 cos θ2 − m1 sin θ1) + r2θ̇  
2 

m1 + m2 m1 + m2 

¨ θ2 = 
−1

(g sin θ2 + 2ṙ2θ̇  
2) 

r2 

the new term in each equation is the centripetal force! 
Is this better with our generalization? 

let m2 swing... we need Potential Energy U and Kinetic Energy T to start: 

U = g(m1 sin θ1 − m2 cos θ2)r 

2T = 
1
(m1 + m2)ṙ +

1 
m2(rθ̇  

2)
2 

2 2 
∂U ∂U 

= g( ) , = gm2r sin θ2
∂r ∂θ2 

∂T ∂T 
= (m1 + m2)ṙ , = m2r 2θ̇  

2
∂ṙ ∂θ̇  

2 
g 

r̈ = (m2 cos θ2 − m1 sin θ1) 
m1 + m2 

This is WRONG! Centripetal force is still missing!! 
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d 
(r 2θ̇  

2) = −gr sin θ2
dt

2 ¨ 2rṙθ̇  
2 + r θ2 = −gr sin θ2 

¨ θ2 = 
−1 

(g sin θ2 + 2 ̇rθ̇  
2) 

r 

but this is now correct! 
Our problem arises from the dependence of the kinetic energy on the coordinate 

r. In generalizing of F = ma, we tacitly assumed: 

Assumed U(q), T (q̇) 
(∂T got d ) = −∂U 

dt ∂q̇ ∂q 

why not 

d (∂L ) = ∂L for L = T − Udt ∂q̇ ∂q 
∂T since ∂U = 0 and = 0 ?∂q̇ ∂q 

This seems unnecessary but let’s try it... 

L = T − U 

= 
1 
2
(m1 + m2) ̇r 2 + 

1 
2 
m2(rθ̇2)

2 − g(m1 sin θ1 − m2 cos θ2)r 

∂L 
∂r 

= m2rθ̇2 
2 
+ g(m1 sin θ1 − m2 cos θ2) 

∂L 
∂ ̇r 

= (m1 + m2) ̇r 

d 
dt 

� 
∂L 
∂ ̇r 

� 

= 
∂L 
∂r 

⇒ r̈ = 
m2 

m1 + m2 
rθ̇2 

2 
+ 

g 
m1 + m2 

(m1 sin θ1 − m2 cos θ2) 
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Done! No Mathematica needed! 
Generalizations are a bit mysterious. Done randomly, most will fail to bear 

fruit, but the RIGHT one can open entirely new ways of approaching physics. We 
will take one more great leap to the Principle of Least Action, and then work our 
way back to Euler Lagrange and F = ma from there. 

Principle of Least Action (PLA): 
for some L(q, ˙R q, t), the motion of a system minimizes 

t2S = L dt, where S = “action” t1 

for a given q(t1) and q(t2) 

S is the action, and L is the Lagrangian. In the most general case L need not 
be T − U . But in most interesting cases, L = T − U . 

The PLA is not like Newtonian thinking. You assume that you know the end 
points, and ask what happened in between. With F = ma you assume you know 
the initial position and velocity, and then move forward in time. 

For the PLA, any trial path is valid. The one with minimal S is the true path. 
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