(1) Introduction

1 Welcome to 8.223

- Classical Mechanics II
- Matthew Evans lecturer
- Lectures M-F 10-11:30 AM in 4-270
- Recitations M-F 12-1 PM in 4-270
- Recitation TAs:
- Stephanie O’Neil (weeks 1-2)
- Yuanhong (Jason) Luo (weeks 3-4)
- Aravind Devarakonda (general, Psets)
- TAs: make suggestions and ask questions!
- website: linked from stellar
- Hi folks! Welcome to 8.223...
- Who am I?
* Astrophysics Division
* Experimentalist
* Gravitational Waves!
- Who are you?
* course 8 ?
* sophomores? juniors?

Class Objectives:

- Classical Mechanics Power Tools
- How to solve the really hard problems with relative ease through Lagrangian Mechanics
- Preparation for Statistical Mechanics and Quantum
- The theoretical foundation for advanced physics lies in Hamiltonian Mechanics
- Unfortunately this means you will have to believe me when I say "this will come in handy in 8.04"
- Course Structure
- Daily Lecture and Recitation - must attend!
- Psets - 70\% - do them daily, hand in Friday 10am
- "Project" - 30\% - one hard problem to do alone

No late psets! No late projects!!

Doing the psets is critical to getting the most of this class. Try them alone, then in a group, then ask an upperclassman, then email the TA.

The project problem should look impossible given only 8.01 physics, but will not be so bad by week 2 or 3! Do it alone (without help from the internet) whenever you like. Turn it in with the last pset on Friday February 2 at 10 AM (or earlier for bonus credit).

Rough Course Outline

Topic	LL Chapter	
Lagrangian Mechancis	$1-5$	$1-4$
Conserved Quantities	$6-10$	$5-6$
Orbits and Scattering	$11,13-15,18-19$	$7-10$
Oscillations	$21-22,25-26$	$11-12$
Tricky Potentials	$30+$	$13-14$
Hamiltonian Mechanics	$40,42,45-46$	$15-19$

A few words about reading LL: it is overly dense, which means that the implications and examples are generally left to the reader. Suggestions:

LL Suggestions

1. Read with a notebook and work out the "evident" transitions between equations.
2. Do the exercises - they overlap with the pset, and the solution is given.
3. Do 1 and 2 before lecture, and bring questions!

Also consider consulting

Classical Dynamics by Marion and Thornton Classical Mechanics by Goldstein

2 8.01 Work Flow Review

In 8.223 , I will assume that you remember 8.01 , and I will occasionally use it as a point of reference.

In 8.01, Newton's second law was king. All you needed was $F=m a$ and some coordinates, and you were ready to go. Sure, you added springs and strings and pulleys and went from point masses to rigid bodies; you integrated in space and time to find energy and momentum, and studied motion in various potentials, but in the end it was always just $F=m a$ in some coordinates.

For any given problem you might

8.01 Work Flow

1. set up a coordinate system
2. draw free body diagram
3. write equations of motion
4. eliminate forces of constraint (e.g. tension in a string)
5. solve for final equations of motion (e.g. $\ddot{x}=\frac{-k}{m} x$)

A typical 8.01 problem:

A typical 8.01 problem:

$$
\begin{aligned}
r & =r_{1}=r_{2} \\
x_{1} & =r \cos \theta \\
x_{2} & =x_{0} \\
y_{1} & =r \sin \theta \\
y_{2} & =y_{0}-r \\
\widehat{r_{1}} & =\cos \theta \widehat{x}+\sin \theta \widehat{y} \\
\widehat{r_{2}} & =-\widehat{y} \\
\widehat{\theta} & =-\sin \theta \widehat{x}+\cos \theta \widehat{y}
\end{aligned}
$$

The next step is a free body diagram.

Analyze the free body diagram:

$$
\begin{aligned}
& F_{x_{1}}=T_{s} \cos \theta-N \sin \theta \\
& F_{x_{2}}=0 \\
& F_{y_{1}}=T_{s} \sin \theta+N \cos \theta-m_{1} g \\
& F_{y_{2}}=T_{s}-m_{2} g
\end{aligned}
$$

Eliminate forces of constraint:

$$
\begin{aligned}
\frac{d}{d t} \theta=0 & \Rightarrow \vec{F}_{1} \cdot \widehat{\theta}=0 \Rightarrow N=m_{1} g \cos \theta \\
\ddot{r}_{1}=\ddot{r}_{2} & \Rightarrow \frac{\vec{F}_{1} \cdot \widehat{r_{1}}}{m_{1}}=\frac{T_{s}}{m_{1}}-g \sin \theta=\frac{\overrightarrow{F_{2}} \cdot \widehat{r_{2}}}{m_{2}}=\frac{-T_{s}}{m_{2}}+g \\
& \Rightarrow T_{s}\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right)=g(1+\sin \theta) \\
& \Rightarrow T_{s}=\frac{m_{1} m_{2}}{m_{1}+m_{2}} g(1+\sin \theta)
\end{aligned}
$$

Write equation of motion:

$$
\begin{aligned}
\ddot{r}=\frac{-F_{y_{2}}}{m_{2}} & =g\left(1-\frac{m_{1}}{m_{1}+m_{2}}(1+\sin \theta)\right) \\
& =\frac{g}{m_{1}+m_{2}}\left(m_{1}+m_{2}-m_{1}-m_{1} \sin \theta\right) \\
\ddot{r} & =\frac{g}{m_{1}+m_{2}}\left(m_{2}-m_{1} \sin \theta\right)
\end{aligned}
$$

Given some initial conditions (r and \dot{r} at $t=0$) you can solve this ODE.

3 Generalizing $F=m a$

In the next few lectures we'll explore a different approach. Here's a brief taste:

Generalizing $\mathrm{F}=\mathrm{ma}$

Generalize $F=m a$ to $\frac{-\partial U}{\partial x}=\frac{d}{d t}(m \dot{x})$, where U is the potential energy. note $m \dot{x}=\frac{\partial}{\partial \dot{x}}\left(\frac{1}{2} m \dot{x}^{2}\right)=\frac{\partial T}{\partial \dot{x}}$ where T is the kinetic energy

$$
\text { thus } F=m a \Rightarrow-\frac{\partial U}{\partial x}=\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{x}}\right)
$$

Let's try this with our example problem.
Note: " T " is used for kinetic energy here (it was tension in the string!)

To find equations of motion:

$$
\begin{aligned}
U & =g\left(m_{1} y_{1}+m_{2} y_{2}\right)=g\left(m_{1} \sin \theta-m_{2}\right) r \\
T & =\frac{1}{2}\left(m_{1} v_{1}^{2}+m_{2} v_{2}^{2}\right)=\frac{1}{2}\left(m_{1}+m_{2}\right) \dot{r}^{2} \\
-\frac{\partial U}{\partial r} & =g\left(m_{2}-m_{1} \sin \theta\right), \frac{\partial T}{\dot{r}}=\left(m_{1}+m_{2}\right) \dot{r} \\
\Rightarrow \ddot{r} & =\frac{g}{m_{1}+m_{2}}\left(m_{2}-m_{1} \sin \theta\right)
\end{aligned}
$$

DONE!! No vectors, no forces of constraint to eliminate!

Kapitza Pendulum Example, NDSolve demo

For tomorrow

1. read Feynman Lecture (pages 1-7, non-relativistic)

2. do pset problems 1-3

Note about lectures: I aim to finish ≈ 15 minutes early, so that there is time for questions (varying from 5-30 minutes early).

MIT OpenCourseWare
https://ocw.mit.edu

8.223 Classical Mechanics II
 January IAP 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

