
Lecture 11: Forced Oscillations 

The previous discussion concerned an HO which, aside from some initial con-
ditions, was free to move without disturbance. 

Next, we consider the behavior of an HO with a driving force. 

To make a force in Lagrangian Mechanics, we start by modifying the poten-
tial: 

U =
1 
kx2 − xF (t)

2 
∂L 

such that Fx = = −kx + F (t)
∂x 

=⇒ EoM mẍ+ kx = F (t) 

F (t) k 
orẍ+ ω0

2 x = , ω0
2 = 

m m 

Here we enter the land of Diff Eq solving, from whence I know that the solution 
is the sum of the “general solution” with F (t) = 0, and a “particular” solution 
to account for F (t). We will restrict our attention to oscillatory driving forces, 
in hopes of finding a workable solution ... 

For F (t) = f cos(ωt + θ), 

x(t) = a1 cos(ω0t + φ) + a2 cos(ωt + θ) 

f 
where φ, a1 come from initial conditions, and a2 = 

m(ω0
2 − ω2) 

1 



⎪⎪⎪
⎪⎪⎪

In case you don’t trust me... 

ẋ = −a1ω0 sin(ω0t + φ) − a2ω sin(ωt + θ) 

ẍ = −a1ω0
2 cos(ω0t + φ) − a 2ω2 cos(ωt + θ) 

f � � 
ẍ+ ω0

2 x = ω0
2 − ω2 cos(ωt + θ) 

m(ω0
2 − ω2) 

f F (t) 
= cos(ωt + θ) = 

m m 
(note: general part cancels, by design; needed to accommodate any 
possible initial conditions. Particular part matches RHS) 

So the motion has 2 parts: 

1. A free oscillation, caused by initial conditions. 

2. The response to the drive with 

x(t) 1 
= 

F (t) m(ω0
2 − ω2)⎧ 
1 1 

= for ω � ω0 (F = kx spring w/o mass!)⎪ mω2 k⎨ 0 

≈ large for ω ≈ ω0 (resonance) ⎪ 1⎩− for ω � ω0 (F = mẍ mass w/o spring!)
mω2 

2 



Something bad happens for ω = ω0 (drive on resonance). The solution in this 
case is 

f 
x(t) = a1 cos(ω0t + φ) + t sin(ω0t + θ)

2mω0 

in which the response to the driving force increases linearly with time, as 
more and more energy is added to the system. 

Clearly this can’t go on forever. Either the amplitude gets large and our 
approximation (or apparatus!) breaks, or some frictional loss stops the growth 
of the oscillation. 

Let’s explore this a little with the not-so-simple pendulum. 
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U = −mgym = −mg` cosφ

T = m
(
ẋ2m + ẏm

1 2
)

2
xm = xd + ` sinφ, ym = ` cosφ

φ̇ẋm = ẋd + ` cosφ

ẏm = −` sinφ φ̇

}
=⇒ T =

1

2
m
(
ẋ2d + `2φ̇2 + 2` cosφ φ̇ ẋd

)

L =
1

2
m
(
`2φ̇2 + 2` cosφ φ̇ ẋd

)
+mg` cosφ

Fφ =
∂L

∂φ
= −m` sinφ φ̇ ẋd −m`g sinφ

pφ =
∂L

∂φ̇
= m`

(
`φ̇+ cosφ ẋd

)



which we can investigate numerically ... 
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For φ� 1, we have

Fφ ≈ −m`(g + φ̇ẋd)φ

ṗφ = m`
(
`φ̈+ ẍd − φφ̇ẋd

)

=⇒ `φ̈+ gφ = −ẍd(t)
for φ� 1, `φ ≈ xm − xd =⇒ `φ̈ = ẍm − ẍd
=⇒ ẍm +

g

`
xm =

g

`
xd(t).

which is our driven HO again with

ω =

√
g

`
Fdφ(t) = − ẍd(t)

`

Fdx(t) =
g

`
xd(t)

Now, if we remove the assumption that φ� 1:

ṗφ = m`
(
`φ̈+ cosφ ẍd − sinφ φ̇ ẋd

)
=⇒ `φ̈+ g sinφ = − cosφ ẍd(t)



MIT OpenCourseWare 
https://ocw.mit.edu 

8.223 Classical Mechanics II 
January IAP 2017 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu
https://ocw.mit.edu/terms



