Massachusetts Institute of Technology

8.223, Classical Mechanics 11

Exercises 1

1. Consider the motion of an object close to the surface of the Earth moving under the influence of Earth’s
gravity.

a) The gravitational force law

Foo

reduces to
F=—-gmz

[13

at the surface with z pointing away from the center of the Earth (i.e., “up”). Express ¢ in terms of G,

Mg and Rg. Compute g in SI units.

b) For a cannonball fired at velocity v, and angle 6 above the horizon on the Moon, find the range;
the distance from the cannon at which the cannonball hits the surface of the Moon. (You will need to
recompute g for the Moon, but the lack of air on the Moon makes this calculation much easier there
than on Earth.)

2. Hooke’s law for a spring of constant k is F' = —kxz. A mass m is pushed from position z, with velocity
v, at t = 0. Find the subsequent motion, x(¢).

3. Some exercises with coordinate systems

a) Find the conversion from spherical (aka “polar”) to cartesian coordinates, i.e. the functions z(r, 6, ¢),
y(r,0,¢) and z(r,0, ¢). Also find the inverse functions, r(z,y, z), etc.

b) Find the conversion from cylindrical to cartesian coordinates, i.e. the functions z(p, ¢, z), etc. Also
find the inverse functions, p(z,y, 2), etc.

¢) A particle starting from the origin moves in the # direction with velocity v, and polar angles ¢, and
0o, such that v = v,7. Express ¢ in cartesian coordinates.

d) OPTIONAL: A particle starting from a point Z, moves with the same velocity from part c) above
(now no longer in the 7 direction). Express ¢ in polar coordinates. From this exercise, you should
notice a BIG weakness of the polar coordinate system.



4. Consider the equation of motion for a pendulum swinging under the influence of Earth’s gravity
mZQ(ﬁ = —myglsin ¢

a) Derive this equation of motion (using the Euler-Lagrange equation), with ¢ = 0 corresponding to
the y-axis (parallel to gravity). Recall that we implement the constraint of a rigid pendulum rod as

x = Lsin(@), y = £cos(d).
b) Justify that for small oscillations, we may use sin ¢ ~ ¢.

¢) Solve the resulting equation for arbitrary (but small) initial conditions to give ¢(t).

5. Starting from the Principle of Least Action, show that a system with N degrees of freedom and

oL d oL
the Lagrangian L(q1,---,qn,q1, *,qn), gives N Euler-Lagrange equations — — — —— = 0 for all

dq;  dt 0g;
ie{l,---,N}.

6. Referring to Eq. 2.8 and the integral equation which follows in Landau,
a) explain in words why S and S’ “differ by a quantity which gives zero on variation”.

b) give 2 example functions which can be written as a total time derivative. That is, find 2 examples
of g(t) such that

o(0,0,1) = 5 Fa.1)

¢) give 2 example functions which cannot be written as a total time derivative (i.e., find 2 examples
of g(q, ¢, t) such that no f(g,t) can be found for the equation in part b).

(Please make your 2 example functions for parts b and c at least linearly independent!)



7.

10.

For a free particle, we know that L = L(v?) if the particle moves in some direction with velocity v.
Carry out a Galilean transformation to a primed frame moving with velocity @ with respect to the
original (unprimed) frame

=/

¥=r—ut, t'=t

and show that if the unprimed frame is inertial, the primed frame is as well. Hint: you can take the
explicit form of the Lagrangian for a free particle L = %va7 and show that L in the unprimed frame
and L in the primed frame (i.e. L' = L((%@ — ©)?)) give the same equations of motion.

Non-commuting derivatives: Use the definition of the total time derivative to

a) show that
0, do

g~ dt dq

i.e., these derivatives commute for any function f = f(q,q,1t).

b) show that
945 _do
aq¢’  dtdq

(i.e., these derivatives do NOT commute.)

0
f+87qf

Take L = mv? — mgz
a) Find the equations of motion.

b) Take #(0) = 0,7(0) = ¥y, vo, > 0 and find Z(7) and ¥(7), 7 such that z(7) = 0,7 #0

A particle of mass m is confined to a parabolic surface of rotation z = ap?, where p = \/x2 + y2. The
gravitational potential is U = mgz.

a) Show the Lagrangian is
1 . . :
L=om(&®+p* + p?6%) — mgz
subject to the constraint that z = ap?, i.e. the particle remains on the surface of parabolic rotation.
b) Use the constraint equation to eliminate z from the Lagrangian and give the equations of motion.

c) Find the generalized momenta p, and py from the Lagrangian. Which, if any, are conserved and why?

d) OPTIONAL: Solve the equations of motion. Don’t spend too much time on this!



MIT OpenCourseWare
https://ocw.mit.edu

8.223 Classical Mechanics |l
January IAP 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.





