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8.223, Classical Mechanics II

Exercises 1

1. Consider the motion of an object close to the surface of the Earth moving under the influence of Earth’s
gravity.

a) The gravitational force law
GMm~F = − r̂
r2

reduces to
~F = −gmẑ

at the surface with z pointing away from the center of the Earth (i.e., “up”). Express g in terms of G,
M and R . Compute g in SI units.⊕ ⊕

b) For a cannonball fired at velocity vo and angle θ above the horizon on the Moon, find the range;
the distance from the cannon at which the cannonball hits the surface of the Moon. (You will need to
recompute g for the Moon, but the lack of air on the Moon makes this calculation much easier there
than on Earth.)

2. Hooke’s law for a spring of constant k is F = −kx. A mass m is pushed from position xo with velocity
vo at t = 0. Find the subsequent motion, x(t).

3. Some exercises with coordinate systems

a) Find the conversion from spherical (aka “polar”) to cartesian coordinates, i.e. the functions x(r, θ, φ),
y(r, θ, φ) and z(r, θ, φ). Also find the inverse functions, r(x, y, z), etc.

b) Find the conversion from cylindrical to cartesian coordinates, i.e. the functions x(ρ, φ, z), etc. Also
find the inverse functions, ρ(x, y, z), etc.

c) A particle starting from the origin moves in the r̂ direction with velocity vo and polar angles φ0 and
θ0, such that ~v = vor̂. Express ~v in cartesian coordinates.

d) OPTIONAL: A particle starting from a point ~xo moves with the same velocity from part c) above
(now no longer in the r̂ direction). Express ~v in polar coordinates. From this exercise, you should
notice a BIG weakness of the polar coordinate system.
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4. Consider the equation of motion for a pendulum swinging under the influence of Earth’s gravity

2 ¨ml φ = −mgl sinφ

a) Derive this equation of motion (using the Euler-Lagrange equation), with φ = 0 corresponding to
the y-axis (parallel to gravity). Recall that we implement the constraint of a rigid pendulum rod as
x = ` sin(φ), y = ` cos(φ).

b) Justify that for small oscillations, we may use sinφ ∼ φ.

c) Solve the resulting equation for arbitrary (but small) initial conditions to give φ(t).

5. Starting from the Principle of Least Action, show that a system with N degrees of freedom and
∂L

the Lagrangian L(q1, · · · , qN , q̇1, · · · , qN ), gives N Euler-Lagrange equations
∂qi
− d

dt

∂L
= 0 for all

∂q̇i
i ∈ {1, · · · , N}.

6. Referring to Eq. 2.8 and the integral equation which follows in Landau,

a) explain in words why S and S′ “differ by a quantity which gives zero on variation”.

b) give 2 example functions which can be written as a total time derivative. That is, find 2 examples
of g(t) such that

d
g(q, q̇, t) = f(q, t)

dt

c) give 2 example functions which cannot be written as a total time derivative (i.e., find 2 examples
of g(q, q̇, t) such that no f(q, t) can be found for the equation in part b).

(Please make your 2 example functions for parts b and c at least linearly independent!)
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7. For a free particle, we know that L = L(v2) if the particle moves in some direction with velocity v.
Carry out a Galilean transformation to a primed frame moving with velocity ~u with respect to the
original (unprimed) frame

~x′ = ~x− ~u t, t′ = t

and show that if the unprimed frame is inertial, the primed frame is as well. Hint: you can take the
explicit form of the Lagrangian for a free particle L = 1mv2, and show that L in the unprimed frame2
and L in the primed frame (i.e. L′ = L((~u− ~v)2)) give the same equations of motion.

8. Non-commuting derivatives: Use the definition of the total time derivative to

a) show that
∂

∂q
ḟ =

d

dt

∂
f

∂q

i.e., these derivatives commute for any function f = f(q, q̇, t).

b) show that
∂

∂q̇
ḟ =

d

dt

∂

∂q̇
f +

∂
f

∂q

(i.e., these derivatives do NOT commute.)

9. Take L = 1mv2 −mgz2

a) Find the equations of motion.

b) Take ~x(0) = 0, ~v(0) = ~v0, v0z > 0 and find ~x(τ) and ~v(τ), τ such that z(τ) = 0, τ 6= 0

10. A particle of mass m is confined to a parabolic surface of rotation z = aρ2, where ρ =
√
x2 + y2. The

gravitational potential is U = mgz.

a) Show the Lagrangian is

L =
1 2 ˙m(ż + ρ̇2 + ρ2φ2)
2

−mgz

subject to the constraint that z = aρ2, i.e. the particle remains on the surface of parabolic rotation.

b) Use the constraint equation to eliminate z from the Lagrangian and give the equations of motion.

c) Find the generalized momenta pρ and pφ from the Lagrangian. Which, if any, are conserved and why?

d) OPTIONAL: Solve the equations of motion. Don’t spend too much time on this!
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