(14) Tricky Potentials

1 Kaptiza Example

Let's try a slightly different pendulum system this time for our next example.

$$
\begin{gathered}
T=\frac{1}{2} m\left(\dot{x}_{m}^{2}+\dot{y}_{m}^{2}\right), \quad U=m g y_{m}, \quad D=\frac{1}{2} b \dot{\phi}^{2} \\
x_{m}=l \sin \phi \quad, \quad y_{m}=y_{d}-l \cos \phi \\
\dot{x}_{m}=l \cos \phi \dot{\phi}, \quad \dot{y}_{m}=\dot{y}_{d}+l \sin \phi \dot{\phi}
\end{gathered}
$$

The Lagrangian for this system, after dropping terms which contain only y_{d}, which is an explicit function of time, is

$$
\begin{aligned}
L & =\frac{1}{2} m\left(l^{2} \dot{\phi}^{2}+2 l \sin \phi \dot{\phi} \dot{y}_{d}\right)+m g l \cos \phi \\
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\phi}}\right) & =m l\left(l \ddot{\phi}+\cos \phi \dot{\phi} \dot{y}_{d}+\sin \phi \ddot{y}_{d}\right) \\
\frac{\partial L}{\partial \phi}-\frac{\partial D}{\partial \dot{\phi}} & =m l\left(\cos \phi \dot{\phi} \dot{y}_{d}-g \sin \phi\right)-b \dot{\phi}
\end{aligned}
$$

which gives us the equation of motion.
A vertically driven pendulum is a bit of a strange thing; it doesn't seem to work as a driver!

$$
l \ddot{\phi}+\frac{b}{l m} \dot{\phi}+\left(g+\ddot{y}_{d}\right) \sin \phi=0
$$

where the damping term is $\frac{b}{l m} \dot{\phi}$.
Instead, the drive appears to modify gravity. This makes sense, due to the equivalence principle. Interestingly, this let's us explore parametric resonance...

Notice how the pendulum becomes excited with a drive at twice the resonance frequency.

We won't cover parametric resonance further, but LL27 does. Methods for understanding non-linear/anharmonic behavior are also covered in LL 28-29, but I found the math unenelightening, so I won't try to reproduce it here.

We also see strange behavior for a high frequency drive. Damping is not important for this, so let's operate with $b=0$. We can understand this by noticing that the pendulum's motion consists of a high frequency part (at the drive frequency) and a low frequency part (swinging around).

$$
\phi(t) \simeq \phi_{1}(t)+\phi_{2}(t)
$$

where ϕ_{1} corresponds to slow oscillations, and ϕ_{2} to fast

$$
l \ddot{\phi}+\left(g+\ddot{y}_{d}\right) \sin \phi=0
$$

$$
\begin{aligned}
& l\left(\ddot{\phi}_{1}+\ddot{\phi}_{2}\right)+\left(g+\ddot{y}_{d}\right) \sin \left(\phi_{1}+\phi_{2}\right)=0 \\
& \text { assume } \phi_{1} \sim \mathrm{const}, \text { and } \phi_{2} \ll 1 \\
& l \ddot{\phi}_{2}+\left(g+\ddot{y}_{d}\right)\left(\sin \phi_{1}+\cos \phi_{1} \phi_{2}\right)=0
\end{aligned}
$$

$$
\text { for } \begin{aligned}
y_{d} & =a_{d} \cos (\omega t) \\
\ddot{y}_{d} & =-a_{d} \omega^{2} \cos \omega t=-\omega^{2} y_{d}
\end{aligned}
$$

Fast oscillation terms, to first order, are

$$
\begin{gathered}
l \ddot{\phi}_{2}+g \cos \phi_{1} \phi_{2}=a_{d} \omega^{2} \sin \phi_{1} \cos \omega t \\
\text { driven response: } \\
\Rightarrow \phi_{2} \simeq \frac{a_{d} \omega^{2} \sin \phi_{1}}{l\left(\omega_{0}^{2} \cos \phi_{1}-\omega^{2}\right)} \cos \omega t \simeq-\sin \phi_{1} \frac{y_{d}}{l} \quad \text { for } \omega \gg \omega_{0}
\end{gathered}
$$

Graphically this result is

Returning to our equations of motion, but keeping $\phi_{2} \ll 1$ and $\ddot{\phi}_{2}=-\sin \phi_{1} \frac{\ddot{y}_{d}}{l}$

$$
\begin{gathered}
l \ddot{\phi}_{1}+\omega^{2} \sin \phi_{1} y_{d}+\left(g-\omega^{2} y_{d}\right) \sin \phi_{1}\left(1-\cos \phi_{1} \frac{y_{d}}{l}\right)=0 \\
l \ddot{\phi}_{1}+g \sin \phi_{1}+\frac{\sin 2 \phi_{1}}{2 l}\left(\omega^{2} y_{d}^{2}-g y_{d}\right)=0
\end{gathered}
$$

We are looking for the slow behavior, so let's average over the fast drive period.
Since $y_{d}=a_{d} \cos (\omega t)$

$$
\Rightarrow \ddot{\phi}_{1}+\frac{g}{l} \sin \phi_{1}+\frac{1}{4}\left(\frac{a_{d} \omega}{l}\right)^{2} \sin \left(2 \phi_{1}\right)=0
$$

If we are close to $\phi_{1} \simeq \pi$ (pointing up)

$$
\begin{gathered}
\text { for } \phi_{1}=\pi+\varepsilon \text { with } \varepsilon \ll 1 \Rightarrow \sin \phi_{1} \simeq-\varepsilon, \sin 2 \phi_{1} \simeq 2 \varepsilon \\
\Rightarrow \ddot{\varepsilon}+\left(\frac{1}{2}\left(\frac{a_{d} \omega}{l}\right)^{2}-\frac{g}{l}\right) \varepsilon=0
\end{gathered}
$$

$$
\begin{gathered}
\Rightarrow \text { oscillator with } \omega_{0}^{2}=\frac{1}{2}\left(\frac{a_{d} \omega}{l}\right)^{2}-\frac{g}{l} \\
\text { stable if } a_{d}^{2} \omega^{2}>g l
\end{gathered}
$$

So, as we have seen, the Kapitza pendulum is stable around $\phi \sim \pi$ (i.e. inverted) given a sufficiently fast drive.

Generally, when treating motion in a rapidly oscillating field, we can define an effective potential

$$
\begin{gathered}
U_{\text {eff }}=U+\bar{T}=U\left(q_{\text {slow }}\right)+\frac{1}{2} m \operatorname{dot}_{\text {fast }}^{2} \\
\text { where } q_{\text {fast }} \text { is the fast part of } q(t)=q_{\text {slow }}(t)+q_{\text {fast }}(t)
\end{gathered}
$$

for us, this would be

$$
\begin{aligned}
E= & \frac{1}{2} m l^{2}\left(\dot{\phi}_{1}+\dot{\phi}_{2}\right)^{2}+m g\left(y_{d}-l \cos \left(\phi_{1}+\phi_{2}\right)\right) \\
& \text { average over fast oscillations }\left(\bar{y}_{d}=0\right) \\
\Rightarrow & \bar{E}=\underbrace{\frac{1}{2} m\left(l \dot{\phi}_{1}\right)^{2}}_{T}+\underbrace{\frac{1}{2} m \overline{\left(l \dot{\phi}_{2}\right)^{2}}-m g l \cos \left(\phi_{1}\right)}_{U_{\mathrm{eff}}}
\end{aligned}
$$

$$
\begin{aligned}
U_{e f f} & =-m g l \cos \phi_{1}+\frac{1}{2} m \overline{\left(-\sin \phi_{1} \dot{y}_{d}\right)^{2}} \\
& =-m g l \cos \phi_{1}+\frac{1}{2} m \sin ^{2} \phi_{1}\left(\frac{1}{2} a_{d} \omega\right)^{2}
\end{aligned}
$$

Note:

$$
\frac{\partial U_{e f f}}{\partial \phi}=m g l \sin \phi_{1}+m \sin (2 \phi)\left(\frac{1}{2} a_{d} \omega\right)^{2}
$$

divide by $m l$ to get our equation of motion for ϕ_{1}

2 Tricky Potentials

Already in this course we have seen a few tricky potentials.
For central potentials, angular momentu gives us an effective potential for r.

Central

$$
\begin{aligned}
U_{e f f}(\vec{q}, \dot{\vec{q}}) & =U_{e f f}(r, \dot{\phi})=U(r)+\frac{1}{2} \mu(r \dot{\phi})^{2} \\
& \Rightarrow U_{e f f}\left(r, L_{z}\right)=U(r)+\frac{L_{z}^{2}}{2 \mu r^{2}}
\end{aligned}
$$

A homogeneous dissipative medium, which converts kinetic energy of the macroscopic to kinetic energy of the microscopic (i.e. heat) can also be treated as a velocity dependent potential

Dissipative

$$
\begin{aligned}
U_{d i s s}(q, \dot{q}) & =U_{c o n}(q)-\int D(\dot{q}) d t \\
\Rightarrow \frac{d}{d t}\left(\frac{\partial L_{c o n}}{\partial \dot{q}}\right) & =\frac{\partial L_{c o n}}{\partial q}-\frac{\partial D}{\partial \dot{q}}
\end{aligned}
$$

And last time we saw another sort of tricky potential for rapidly oscillating fields or drives

Rapid Drive

$$
\begin{aligned}
& U_{\text {eff }}(q, \dot{q})=U(q)+\frac{1}{2} m \overline{\dot{q}_{f a s t}^{2}} \\
& \text { for } q(t)=q_{\text {slow }}(t)+q_{\text {fast }}(t)
\end{aligned}
$$

These are all scalars. Need to note that $U_{\text {eff }}$ comes from including the same T, which can be written as $T(q)$, in U to get $U_{\text {eff }}=U(q)+T(q)$.

3 Lorentz Force

Today we encounter another tricky potential, this one from 8.02. The force on a charged particle moving in E and B fields is (as you may recall)

Lorentz force on particle with charge e (not q !)

$$
\vec{F}=e(\vec{E}+\vec{v} \times \vec{B})
$$

where \vec{E} is the electric field and \vec{B} is the magnetic field.

Many everyday objects use electric motors and/or generators, all of which depend on the Lorentz force.

I'm not going to use q here to avoid confusion. e is some charge and \vec{r} is the Cartesian Coordinate of that charge.

Let's say I have a small test charge constrained to move along a wire in an external B-field. The B-field can be along \hat{z}, and the wire can be a helical coil, like a spring.

$$
\begin{array}{lll}
x=R \cos \phi & \dot{x}=-R \sin \phi \dot{\phi} \\
y=R \sin \phi & \dot{y}=R \cos \phi \dot{\phi} \\
z=\alpha \phi & & \dot{z}=\alpha \dot{\phi}
\end{array}
$$

How does the charge move? Ideas? Let's find out... we need a potential for the Lorentz force

$$
\begin{aligned}
U_{L}(\vec{r}, \dot{\vec{r}}) & =e(\Phi-\vec{A} \cdot \dot{\vec{r}}) \\
\vec{E} & =-\nabla \Phi(\vec{r}, t)-\frac{\partial}{\partial t} \vec{A}(\vec{r}, t) \\
\vec{B} & =\nabla \times \vec{A}
\end{aligned}
$$

$\Phi \equiv$ electric scalar potential $\vec{A} \equiv$ magnetic vector potential
 NB: for constant, uniform B-field, $\vec{A}=\frac{1}{2} \vec{r} \times \vec{B}$

So, for our test charge we have

$$
\begin{aligned}
\vec{B} & =B \hat{z} \Rightarrow \vec{A}=\frac{B}{2}\{-y, x, 0\} \\
U & =m g z-\vec{A} \cdot \dot{\vec{r}}=m g z+\frac{e B}{2}(y \dot{x}-x \dot{y}) \\
& =m g \alpha \phi+\frac{e B R^{2}}{2}\left(-\sin ^{2} \phi-\cos ^{2} \phi\right) \dot{\phi}
\end{aligned}
$$

$$
\begin{aligned}
& T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)=\frac{1}{2} m\left(R^{2}+\alpha^{2}\right) \dot{\phi}^{2} \\
& \Rightarrow L=\frac{1}{2} m\left(R^{2}+\alpha^{2}\right) \dot{\phi}^{2}-m g \alpha \phi+\underbrace{\frac{e B R^{2}}{2} \dot{\phi}}_{\text {drop! }}
\end{aligned}
$$

The dynamics are unchanged by the B-field! Why?

$$
F \cdot v=(\vec{v} \times \vec{B}) \cdot \vec{v}=0 \Rightarrow \text { no work done }
$$

This will be true for any 1-D motion, so let's try 2-D...
How about a charge free to move in the y-z plane with a B-field in the \hat{x} direction?

$$
\begin{gathered}
\vec{B}=B \hat{x} \Rightarrow \vec{A}=\frac{B}{2}\{0,-z, y\} \\
\Rightarrow L=\frac{1}{2} m\left(\dot{y}^{2}+\dot{z}^{2}\right)+\frac{e B}{2}(y \dot{z}-z \dot{y})-m g z
\end{gathered}
$$

$$
\begin{gathered}
F_{y}=\frac{\partial L}{\partial y}=\frac{e B}{2} \dot{z}, \quad p_{y}=\frac{\partial L}{\partial \dot{y}}=m \dot{y}-\frac{e B}{2} z \\
\dot{p}_{y}=F_{y} \Rightarrow m \ddot{y}-\frac{e B}{2} \dot{z}=\frac{e B}{2} \dot{z}
\end{gathered}
$$

$$
\begin{gathered}
F_{z}=\frac{-e B}{2} \dot{y}-m g, \quad p_{z}=m \dot{z}+\frac{e B}{2} y \\
\Rightarrow \ddot{y}=\beta \dot{z}, \quad \ddot{z}=-g-\beta \dot{y} \\
\text { with } \beta=\frac{e B}{m}
\end{gathered}
$$

These equations of motion are simple enough to solve, and the solution is interesting...let's see what happens for a particle that starts at rest.

If you ignore g, you might guess that since the Lorentz force is \perp to \vec{v}, the trajectory must be a circle.

$$
\begin{aligned}
& y(t)=a \sin \omega t \Rightarrow \dot{y}=-\omega z, \quad \ddot{y}=-\omega^{2} y \\
& z(t)=-a \cos \omega t \Rightarrow \dot{z}=\omega y, \quad \ddot{z}=-\omega^{2} z
\end{aligned}
$$

Another way to see that the trajectory must be a circle is to notice that

$$
\begin{gathered}
\dddot{z}=-\beta \ddot{y}=-\beta^{2} \dot{z}=-\omega^{2} \dot{z} \\
\text { with } \beta=\omega
\end{gathered}
$$

which is the time derivative of equation of motion for a harmonic oscillator with frequency β.

Comparing with our equations of motion suggests that $\omega=\beta$, but we have this pesky gravity... no problem, add $-\frac{g}{\beta} t$ to $y(t)$. This doesn't change \ddot{y}.

$$
\begin{aligned}
y(t) & =a \sin \beta t-\frac{g}{\beta} t \\
\dot{y} & =a \beta \cos \beta t-\frac{g}{\beta} \\
\dot{z} & =a \beta \sin \beta t
\end{aligned}
$$

To start at rest, we need

$$
\begin{aligned}
\dot{y}(t=0)=0 & \Rightarrow a=-\frac{g}{\beta^{2}} \\
y(t) & =-\frac{g}{\beta^{2}}(\sin \beta t+\beta t) \\
z(t) & =\frac{g}{\beta^{2}} \cos \beta t
\end{aligned}
$$

So this particle doesn't fall, it moves sideways with average velocity $\frac{g}{\beta}$ (for general initial conditions, you get sin and cos components for both y and z).

We can quickly relate this result to particle accelerators, though our non-relativistic physics is clearly inadequate to get a good answer...

For a particle moving in a plane \perp to gravity, and with our B-field pointing up, we can reuse the previous result

$$
\begin{gathered}
\text { for } \vec{B}=B \hat{z} \quad \ddot{x}=\beta \dot{y} \quad, \quad \ddot{y}=\beta \dot{x} \\
x(t)=a \sin \beta t \Rightarrow \dot{x}=a \beta \cos \beta t \\
y(t)=-a \cos \beta t \Rightarrow \dot{y}=a \beta \sin \beta t
\end{gathered}
$$

So if we start a proton with an initial velocity c in the \hat{x} direction...

$$
\begin{aligned}
\text { for } \overrightarrow{v_{0}}=c \hat{x} & \Rightarrow a=\frac{c}{\beta}=\frac{m_{p} c}{e B} \\
\text { for } B \simeq 8 \text { Tesla } & \Rightarrow a=0.4 \mathrm{~m}
\end{aligned}
$$

with $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, m_{p}=1.7 \times 10^{-27} \mathrm{~kg}$ and $e=1.6 \times 10^{-19} \mathrm{C}$.
But CERN has a radius of 4.5 km !
If we replace m_{p} with the relativistic mass $m_{r}=E_{p} / c^{2}$ we get the right answer:

$$
\begin{aligned}
& m_{r}=\frac{E_{p}}{c^{2}} \sim 10^{4} m_{p} \Rightarrow a_{r}=\frac{E_{p}}{e B c} \sim 4.2 \mathrm{~km} \\
& \quad \text { for } E_{p} \approx 10 \mathrm{Tev} \approx 1.6 \times 10^{-6} \mathrm{~J}
\end{aligned}
$$

4 Gauge Invariance

We have some freedom in choosing the magnetic vector potential \vec{A}

Gauge Transformation

$$
\begin{aligned}
\Phi^{\prime} & =\Phi-\frac{\partial}{\partial t} f \quad \vec{A}^{\prime}=\vec{A}+\nabla f \\
\vec{B}^{\prime} & =\nabla \times \vec{A}^{\prime}=\nabla \times(\vec{A}+\nabla f)=\vec{B}+\underbrace{\nabla \times(\nabla f)}_{\text {this is } 0} \\
\vec{E}^{\prime} & =-\nabla \Phi^{\prime}-\frac{\partial}{\partial t} \vec{A}^{\prime}= \\
& =-\nabla\left(\Phi-\frac{\partial}{\partial t} f\right)-\frac{\partial}{\partial t}(\vec{A}+\nabla f)=\vec{E}
\end{aligned}
$$

What about our Lagrangian?

Gauge Invariant Equation of Motion

$$
\begin{aligned}
L^{\prime}=\Phi-e\left(\Phi^{\prime}-\overrightarrow{A^{\prime}} \cdot \vec{r}\right) & =L+e\left(\frac{\partial}{\partial t} f+\dot{\vec{r}} \cdot \frac{\partial}{\partial \vec{r}} f\right) \\
& =L+e \frac{d}{d t} f
\end{aligned}
$$

For Interesting physics associated with magnetic vector potential, google AharnovBohm effect.

MIT OpenCourseWare
https://ocw.mit.edu

8.223 Classical Mechanics II
 January IAP 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

