
Gravity, Metrics and Coordinates

1. Introduction

These notes supplement Chapter 2 of EBH (Exploring Black Holes by Taylor and Wheeler).

They provide several examples of metrics for realistic spacetimes and apply the concepts of coor-

dinate transformations and local inertial frames discussed in the first set of notes, Coordinates and

Proper Time. You should focus on the mathematical issues here first, and not expect the equations

to provide you immediately with wonderful intuitive understanding. It takes time and practice to

learn how to read a foreign language. Similarly it takes time and practice to learn how to read

a metric. These notes will provide you with some of the mathematical background along with a

few glittering examples of physical insight. First, however, we begin with a summary of Einstein’s

great insights that led to his revolutionary theory of gravity.

2. Gravity and Fields from Galileo to Einstein

Our introduction to general relativity begins with a review of the key discoveries in physics

which inspired Einstein. It is a huge conceptual leap to go from Newtonian gravity to general

relativity. Let us take a slow walk over the long bridge between these two theories.

Newtonian gravitation is described by an inverse square law of force. This force can be obtained

from the gravitational potential ΦN(~x, t) by means of simple calculus.
2 The gravitational potential

is a scalar field, i.e. a single function defined at each spacetime event. The spatial gradient of the

potential gives the gravitational force on a test particle:

~Fg = −mg
~∇ΦN = −mg

(

∂φ

∂x
~ex +

∂φ

∂y
~ey +

∂φ

∂z
~ez

)

. (1)

1Perfection is reached, not when there is no longer anything to add, but when there is no longer anything to take

away.

2The subscript N reminds us that this is the Newtonian potential.
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You should verify that the gravitational force due to a mass M arises from the potential ΦN =

−GM/r with r =
√

x2 + y2 + z2. We use the notation ~ex for the unit vector in the x-direction

(and similarly for y and z). The symbol mg is used for the gravitational mass, i.e. the mass

that determines the gravitational force on a body. This is by contrast with the inertial mass mi

appearing in Newton’s second law of motion:

~a = m−1i
~F , (2)

where ~a is the acceleration of a body subjected to force ~F . Combining equations (1) and (2) we

see that the acceleration of a body in a gravitational field depends on the ratio mg/mi:

~a = −mg

mi

~∇ΦN . (3)

Galileo showed experimentally 400 years ago that all bodies accelerate exactly the same way in a

gravitational field.3 Newton interpreted this result to imply the equivalence of gravitational and

inertial mass, mi = mg.
4

We are so used to the equivalence of inertial and gravitational masses that we drop the sub-

scripts and refer only to the mass m. Einstein’s first great insight was to realize that this result

should not be taken for granted, as it provides an important clue to the nature of gravity.

To see why Galileo’s result is special, consider electric fields, which obey an inverse square

law very similar to gravity. The acceleration caused by an electric field is proportional to q/mi

where q is the test charge. However, the ratio q/mi is not the same for all bodies, unlike mg/mi.
5

Einstein realized the deep significance of mi = mg = m and adopted it as the centerpiece of his

Equivalence Principle. By following the Equivalence Principle to its logical conclusion, Einstein

was able to develop the theory of General Relativity from pure thought.

In this class we will not follow Einstein’s path in all its mathematical sophistication. However,

we will use the most important consequence of the Equivalence Principle, which provided the

framework for Einstein’s whole approach to combining gravity and relativity: Gravitational forces

result from the properties of spacetime itself.

This assumption is radical from the perspective of Newtonian mechanics where gravity is given

instantaneously by action at a distance and spacetime is nothing but the unchanging stage upon

which all action takes place. According to Newton’s laws, if you cross the street, the gravitational

field a million light years away changes instantaneously. Yet according to the special theory of

relativity, signals cannot travel infinitely fast. Newtonian gravity contradicts special relativity.

3Galileo studied non-relativistically moving bodies. Had he been able to measure the accelerations of relativistically

moving objects, he would have found that the acceleration depends on v/c.

4This conclusion assumes that the gravitational potential is independent of the mass of the test particle.

5Consider, for example, a proton, neutron, and electron.
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A similar puzzle arises with electromagnetism and it had been resolved by the work of Faraday

and Maxwell. The electric force between two charges obeys an inverse square law so that moving

one charge in Boston would, according to Coulomb’s law, instantaneously change the electric force

everywhere in the universe.

Faraday introduced the concept of a field of force which transmits the action of electricity

or magnetism (and gravity) through space. Maxwell showed that changes in the field are not

propagated instantaneously but instead travel at the speed of light. The static Coulomb law, and

by extension the static inverse square law of gravitation, need to be modified when the sources are

in motion.

Einstein made a radical proposal: not only are gravitational effects carried by a field, but that

field is intimately related to the spacetime geometry itself. In general relativity, the spacetime metric

itself plays the role of the field conveying all gravitational effects.6 The various terms in the metric

are now to be regarded as functions of the spacetime coordinates following from the distribution of

gravitational sources. We will devote the rest of this semester to exploring the metric and its effect

on motion. John Wheeler summarizes general relativity in one elegant sentence: “Spacetime tells

matter how to move; matter tells spacetime how to curve.”

Spacetime is no longer the eternal, unchanging stage upon which all the world’s dramas are

played out. Spacetime itself is an actor. The choreography of stage and players makes general

relativity one of the most challenging — and rewarding — physical theories to master.

Having argued that all gravitational effects must be encoded in the metric itself, we are led to

ask how they are encoded in the metric. To answer this question we will examine a simple class of

spacetime metrics around the structure of most interest in this course, the spherical black hole.

3. Static, Spherically Symmetric Spacetimes

The spacetimes around non-spinning stars and black holes are static and spherically symmetric

to good accuracy. As a first step to studying the black hole metric, we provide a heuristic derivation

of the general static, spherically symmetric metric.

We already know one static, spherically symmetric spacetime — the flat spacetime of special

relativity. In Cartesian coordinates its metric is

dτ2 = dt2 − dx2 − dy2 − dz2 . (4)

This metric is static because the coefficients of the differentials are independent of t. To show that

6The equivalence of inertial and gravitational masses crucially underlies this postulate. All bodies do not accelerate

the same way in an electric field;, implying that electric effects cannot arise from the metric alone.
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it is spherically symmetric, we transform from Cartesian to spherical polar coordinates:

x = r sin θ cosφ , y = r sin θ sinφ , z = r cos θ . (5)

Taking the differentials (dx, dy, dz) and using the chain rule, one finds

dx = dr sin θ cosφ+ dθ r cos θ cosφ− dφ r sin θ sinφ ,

dy = dr sin θ sinφ+ dθ r cos θ sinφ+ dφ r sin θ cosφ , (6)

dz = dr cos θ − dθ r sin θ .

Substituting this into equation (4) gives

dτ2 = dt2 − dr2 − r2dθ2 − r2 sin2 θ dφ2 . (7)

We now see the key feature of spherical symmetry: the polar angles (θ, φ) appear only in the

combination of the metric for a sphere, dθ2 + sin2 θ dφ2.

The most general static metric with spherical symmetry is obtained by adding more terms to

the metric (but none with θ and φ) and allowing the coefficients to depend on r:

dτ2 = e2Φ(r)dt2 − 2A(r)dtdr − e2Λ(r)dr2 − r2e2B(r)
(

dθ2 + sin2 θ dφ2
)

, (8)

where Φ, Λ, A, and B are four arbitrary real functions of r. Note that Φ is not the same, in general,

as the Newtonian gravitational potential ΦN.

Equation (8) is actually too general. One of the most confusing aspects of general relativity

for the novice is the fact that coordinates may be freely transformed without changing the physics.

A terrestrial analogy might be when new telephone area codes are introduced and one’s telephone

number changes. Our labels may change but we must still be able to call our friends! In general

relativity, however, the situation is more complicated: coordinates may be changed at any time,

and sometimes several times during a calculation!

We can take advantage of this flexibility to simplify equation (8). In the homework, you will

find equations that must be obeyed by coordinate transformations t′(t, r) and r′(r) such that, in

the primed coordinates, equation (8) holds with A = B = 0. (The Φ and Λ fields may change but

they will still depend only on r.) Dropping the primes, we conclude that the most general static,

spherically symmetric spacetime may be written in the form

dτ2 = e2Φ(r)dt2 − e2Λ(r)dr2 − r2
(

dθ2 + sin2 θ dφ2
)

. (9)

The radial coordinate r is sometimes called angular radius because it is used to related angular

differentials to distance in the same way as in Euclidean space. For example, if we hold fixed t, r, and

φ, the proper distance is ds = rdθ. (Recall that ds2 ≡ −dτ2.) It follows that the length of a great
circle is 2πr, motivating EBH to designate the r-coordinate reduced circumference. Note that all

of the coordinates in the metric are bookkeeper coordinates — they have no meaning independent
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of the metric. The metric tells us how to measure distances and times – the coordinates do not! If

you never confuse r or t with physical distance and time, you will save yourself a lot of grief! The

authors of EBH are careful to put subscripts like shell on physical distances and times measured

by shell observers. Bookkeeper coordinates have no subscripts.

4. Newtonian and Einstein Field Equations

In Newtonian gravity, there is only one potential ΦN(~x, t). In general relativity, for static,

spherically symmetric spacetimes, there are two: Φ(r) and Λ(r). Before explaining why, we review

the field equations of Newtonian gravity.

In Newtonian gravity, the gravitational potential obeys a second-order partial differential equa-

tion called the Poisson equation:

∇2ΦN = 4πGρ . [Newton] (10)

Here ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplace operator and ρ(~x, t) is the mass density.

Equation (10) is similar to Gauss’s law of electromagnetism

~∇ · E ≡ ∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z
= 4πρq , [Coulomb] (11)

where ρq(~x ) is the charge density. Static electric fields, like Newtonian gravitational fields, follow

from an electrostatic potential ΦE akin to equation (1): ~E = −~∇ΦE . Combining this with Gauss’s
law gives ∇2ΦE = −4πρq. Not surprisingly, gravity obeys the same equation except that the
electric potential and charge are replaced by the gravitational potential and mass, with a sign

change because like positive charges repel while positive masses attract. (The factor G in the

gravitational equation may be eliminated by a choice of units.)

Equation (10) has a simple solution which we present without proof:

ΦN(~x, t) = −G
∫

ρ(~x ′, t) d3x′

|~x− ~x ′| . [Newton] (12)

If you haven’t seen equations (10) or (12) before, don’t worry; we won’t be using them. However,

we will use the form of equation (10) that applies in spherical coordinates. If the mass density

ρ is independent of angles, then the potential is spherically symmetric and the Laplace operator

simplifies:
1

r2
∂

∂r

(

r2
∂ΦN
∂r

)

= 4πGρ(r, t) . [Newton] (13)

You should be able to integrate this immediately to obtain

ΦN(r, t) =

∫ ∞

r

GM(r′, t)

r′2
dr′ , M(r, t) ≡

∫ r

0
ρ(r, t) 4πr′2dr′ . [Newton] (14)
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Note thatM(r, t) is the mass enclosed by a sphere of radius r. If the mass is concentrated at r = 0,

this immediately gives ΦN = −GM/r. Note also that a prime is put on the dummy variable of

integration because both M(r, t) and ΦN(r, t) are given by definite integrals. (The upper limit of

integration on ΦN is chosen so that ΦN → 0 as r →∞.)

In General Relativity, the metric functions Φ and Λ in equation (9) obey a set of nonlinear

partial differential equations first derived by Einstein and called the Einstein field equations in

his honor. We will neither present a derivation of the Einstein field equations nor even state

their general form.7 For the static, spherically symmetric metric of equation (9), these differential

equations give the following:

1

r2
d

dr

[

r
(

1− e−2Λ
)]

= 8πGρ(r) , [Einstein] (15a)

2

r

dΦ

dr
e−2Λ − 1

r2
(

1− e−2Λ
)

= 8πGp(r) . [Einstein] (15b)

These equations contain the mass-energy density ρ(r) and pressure p(r) of the medium responsible

for producing the gravity. They illustrate a key difference between General Relativity and Newto-

nian gravity: In General Relativity, pressure is a source of gravity. The units of pressure are force

per unit area, which is equivalent to energy per unit volume. Thus, p has the same units as ρc2.

(The factor c2 is absent from eq. 15b because in these notes we always choose units so that c = 1.)

Because the metric function Φ(r) depends on pressure, it follows that pressure causes gravita-

tional effects. You might wonder whether these are related to the ordinary pressure force that a gas

exerts on the walls of its container. The answer is no — the two effects are completely unrelated.

The ordinary pressure force depends only on pressure differences arising from the pressure gradient
~∇p. Equation (15b) says nothing at all about forces. It simply says that pressure causes spacetime
to curve. We have said nothing yet about how gravitational force arises from spacetime curvature.

That will be the subject of next week’s material.

If pressure and density both contribute to gravity, why do Newton’s laws include only density?

The answer lies in the factor c2 relating the units of the two quantities. Using Einstein’s famous

formula E = mc2 and restoring the factors of c, the energy density of a nonrelativistic gas is ρc2.

The pressure has the same units, implying that pressure divided by density must be the square

of some speed. For a nonrelativistic gas of molecules of mass m and number density n (molecules

m−3), elementary thermodynamics gives us

p = nkT = ρ
kT

m
≈ ρc2s . (16)

Here, k is the Boltzmann constant and cs is the sound speed of the gas.
8 For a nonrelativistic gas,

7After taking 8.224 and 8.07, you may wish to take 8.962 where the Einstein field equations and their solutions

are investigated in detail.

8For an ideal gas, c2s = γkT/m where γ is a constant close to one. For a diatomic gas, γ = 1.4.
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cs ¿ c so that the right-hand side of equation (15b) is orders of magnitude less than the right-hand

side of equation (15a).

5. Schwarzschild Metric and a Variation

Starting from equations (15), as a homework exercise you will derive the metric for a spacetime

with p = 0 everywhere and a point massM located at r = 0. The result is the famous Schwarzschild

metric:

dτ2 =

(

1− 2GM
r

)

dt2 −
(

1− 2GM
r

)−1

dr2 − r2
(

dθ2 + sin2 θ dφ2
)

. (17)

The factors of G may be removed simply by appropriate choice of units, as discussed in Section 2-6

of EBH. EBH further restrict the discussion to the equatorial plane θ = π
2 in which case dθ = 0.

We will not say more about the Schwarzschild metric now, because that will be the main

business for the next few weeks. However, we do wish to emphasize again that the coordinates

(t, r, θ, φ) are simply bookkeeper coordinates with no physical significance by themselves. In General

Relativity, the metric gives the coordinates meaning.

To show the non-uniqueness of the Schwarzschild coordinates, we will transform to a different

set of coordinates which EBH call rain coordinates in Project B. (See pp. B-12 through B-14 in

EBH.) The transformation proceeds as follows. First, we put primes on (t, r) in equation (17) —

since they are just bookkeeper coordinates, we are free to call them anything we want to. Then we

transform as follows:

t′ = t+ f(r) , r′ = r , (18)

where f(r) is a function to be determined. Next, take the differentials: dt′ = dt + (df/dr)dr and

dr′ = dr. Substituting into the Schwarzschild metric and grouping terms gives

dτ2 = Adt2 + 2
df

dr
Adtdr −

[

A−1 −A

(

df

dr

)2
]

dr2 − r2
(

dθ2 + sin2 θ dφ2
)

, A ≡ 1− 2GM
r

. (19)

Now we impose a special condition on f(r): we require that, for dt = 0, the metric reduce to

the spatial metric of three-dimensional Euclidean space in spherical coordinates, as in equation (7).

This condition cannot be met for an arbitrary spacetime but, remarkably, for a non-rotating black

hole it is possible. It is accomplished by requiring the term in square brackets in equation (19) to

equal 1. This condition is satisfied if

±f(r) =
∫

√
2GMr dr

r − 2GM = 2
√
2GMr + 2GM ln

(√
r −
√
2GM

√
r +
√
2GM

)

. (20)

We are free to choose either sign for f . With the choice of minus sign, the rain-frame metric

becomes

dτ2 =

(

1− 2GM
r

)

dt2 − 2
√

2GM

r
dtdr − dr2 − r2

(

dθ2 + sin2 θ dφ2
)

. (21)
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Equation (21) looks quite different from equation (17). Yet both metrics describe the same

spacetime! You must not assume that, because both metrics use the same symbols (t, r, θ, φ),

these coordinates have the same meaning. The bookkeeper time for the two metrics is completely

different, as shown by equations (18) and (20). EBH choose to call the bookkeeper time in the

rain coordinates train to avoid confusion with the bookkeeper time in Schwarzschild coordinates.

Even without such subscripts, the bookkeeper coordinates become unambiguous once we specify

the metric. To badly paraphrase Hamlet,

More relative than this: the metric’s the thing

Wherein we’ll catch the coordinates’ meaning.

In the next few weeks we will focus on the interpretation of the metric and coordinates. We

will find that the metric not only tells us almost everything that one can know about the structure

of spacetime, but it also tells us everything we need to know about gravity.


