Detection of Gravitational Waves with Interferometers

Global network of detectors

Science goals: Detection of gravitational waves

Tests of general relativity

- Waves
 → direct evidence for time-dependent metric
- Black hole signatures
 → test of strong field gravity
- Polarization of the waves

 spin of graviton
- Propagation velocity
 → mass of graviton
- Astrophysical processes
 - Inner dynamics of processes hidden from EM astronomy
 - Cores of supernovae
 - Dynamics of neutron stars → large scale nuclear matter
 - The earliest moments of the Big Bang → Planck epoch
- Astrophysics...

A little bit of GR

From special relativity, "flat" space-time interval is

$$(d\tau)^{2} = -c^{2}(dt)^{2} + (dx)^{2} + (dy)^{2} + (dz)^{2}$$
$$= \eta_{\mu\nu}(dx)^{\mu}(dx)^{\nu}$$

From general relativity, curved space-time can be treated as perturbation of flat space-time

Space-time interval becomes

/ 🖌 🕻 C+ 🔴

$$(d\tau)^{2} = -c^{2}dt^{2} + \left[1 + h(z \pm ct)\right]dx^{2} + \left[1 - h(z \pm ct)\right]dy^{2} + dz^{2}$$

■ When the gravitational field is weak and in the transverse traceless gauge by world lines of freely falling masses

Einstein's equations give a wave equation

$$G_{ij} = 8\pi T_{ij} \qquad \Rightarrow \qquad \left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) h_{\mu\nu} = 0$$

Space-time tell matter how to move Matter tells space-time how to curve

- Time-dependent solution → $h(t) = h_0 \cos(\omega_g t + \phi)$
- *h* is wave-like motion of the space-time itself
 ripples of space-time curvature
- H is dimensionless

- Waves travel at the speed of light
- Waves push freely floating objects together and apart
 Stretching and squeezing of space transverse to direction of propagation
- Frequency of oscillation is ω_g

Gravitational waves and GR

Interaction with matter

GWs meet Interferometers

LIGO

Some properties of gravitational waves

- General relativity predicts transverse space-time distortions propagating at the speed of light
- In TT gauge and weak field approximation, Einstein field equations
 > wave equation
- Conservation laws

- Conservation of energy

 no monopole radiation
- Conservation of momentum

 no dipole radiation
- Lowest moment of field → quadrupole (spin 2)
- Radiated by aspherical astrophysical objects
- Radiated by "dark" mass distributions
 black holes, dark matter

E&M

Space as medium for field Accelerating charge → incoherent superpositions of atoms, molecules Wavelength small compared to sources → images Absorbed, scattered, dispersed by matter 10 MHz and up Detectors have small solid angle acceptance

GW

Spacetime itself

Accelerating aspherical mass \rightarrow coherent motions of huge masses

Wavelength large compared to sources \rightarrow no spatial resolution

Very small interaction; matter is transparent

10 kHz and down

Detectors have large solid angle acceptance

Very different information, mostly mutually exclusive
 Difficult to predict GW sources based on E&M observations

Astrophysical sources of GWs

GWs

neutrinos

photons

now

11

- Coalescing compact binaries
 - Classes of objects: NS-NS, NS-BH, BH-BH
 - Physics regimes: Inspiral, merger, ringdown
- Periodic sources
 - Spinning neutron stars ->
 ellipticity, precession, r-modes
- Burst events

- Supernovae → asymmetric collapse
- Stochastic background
 - Primordial Big Bang (t = 10⁻⁴³ sec)
 - Continuum of sources
- The Unexpected

Strength of GWs: e.g. Neutron Star Binary

Gravitational wave amplitude (strain)

$$h_{\mu\nu} = \frac{2G}{c^4 r} \ddot{I}_{\mu\nu} \Longrightarrow h \approx \frac{4\pi^2 GMR^2 f_{orb}^2}{c^4 r}$$

For a binary neutron star pair

LIGO

 $M \approx 10^{30} \text{ kg}$ $R \approx 20 \text{ km}$ $f \approx 400 \text{ Hz} \implies h \sim 10^{-21}$ $r \approx 10^{23} \text{ m}$

Practical Interferometer

- For more practical lengths (L ~ 1 km) ⇒ "fold" interferometer to increase phase sensitivity
 - $\Delta \phi = 2 \text{ k} \Delta L \rightarrow N (2 \text{ k} \Delta L); N \sim 100$
 - N ⇒ number of times the photons hit the mirror
- Light storage devices ⇒ optical cavities
- Dark fringe operation ⇒ lower shot noise
- GW sensitivity ∞ ⊠>P ⇒ increase power on beamsplitter
- Power recycling

- Most of the light is reflected back toward the laser
 "recycle" light back into interferometer
- Price to pay: multiple resonant cavities whose lengths must be controlled to ~ 10⁻⁸ λ

Initial LIGO Sensitivity Goal

- Strain sensitivity
 < 3x10⁻²³ 1/Hz^{1/2}
 at 200 Hz
- Displacement Noise
 - Seismic motion
 - Thermal Noise
 - Radiation Pressure
- Sensing Noise
 - Photon Shot Noise
 - Residual Gas
- Facilities limits much lower

LIGO

Limiting Noise Sources: Seismic Noise

- Motion of the earth few μm rms at low frequencies
- Passive seismic isolation 'stacks'
 - amplify at mechanical resonances
 - but get f¹² isolation per stage above 10 Hz

LIGO

Limiting Noise Sources: Thermal Noise

- Suspended mirror in equilibrium with 293 K heat bath ⇒ k_BT of energy per mode
- Fluctuation-dissipation theorem:
 - Dissipative system will experience thermally driven fluctuations of its mechanical modes:

 $\widetilde{h}(f) = \frac{\sqrt{k_B T}}{\pi f L} \sqrt{\text{Re}(Z(f))}$ Z(f) is impedance (loss)

- Low mechanical loss (high Quality factor)
 - Suspension

 no bends or 'kinks' in pendulum wire
 - Test mass

 no material defects in fused silica

Limiting Noise Sources: Quantum Noise

Shot Noise

Uncertainty in number of photons detected ⇒

$$h(f) = \frac{1}{L} \sqrt{\frac{hc \lambda}{8F^2 (P_{bs})}} \frac{1}{T_{ifo}(\tau_s, f)}$$

- Higher input power $P_{bs} \Rightarrow$ need low optical losses
- (Tunable) interferometer response → T_{ifo} depends on light storage time of GW signal in the interferometer
- **Radiation Pressure Noise**
 - Photons impart momentum to cavity mirrors Fluctuations in the number of photons

$$h(f) = \frac{2F}{ML} \sqrt{\frac{2hP_{bs}}{\pi^3 c \lambda}} \frac{T_{ifo}(\tau_s, f)}{f^2}$$

- Lower input power, P_{bs}
- → Optimal input power for a chosen (fixed) T_{ifo}

Operations Strategy

Interferometer performance

Intersperse commissioning and data taking consistent with obtaining one year of integrated data at $h = 10^{-21}$ by end of 2006

Astrophysical searches

 Two "upper limit" runs S1 and S2 (at unprecedented early sensitivity) are interleaved with commissioning

- **S2** Feb-Apr 2003 duration: 8 weeks
- First search run (S3) planned for late 2003 (duration: 6 months)
- Finish detector integration & design updates...
 - Engineering "shakedown" runs interspersed as needed
- Advanced LIGO

S1 Run Summary

•August 23 – September 9, 2002: 408 hrs (17 days).

•H1 (4km): duty cycle 57.6% ; Total Locked time: 235 hrs

<u>H2</u> (2km): duty cycle 73.1%; Total Locked time: 298 hrs

•<u>L1</u> (4km): duty cycle 41.7% ; Total Locked time: 170 hrs

Double coincidences:

LIGO

•L1 && H1 : duty cycle 28.4%; Total coincident time: 116 hrs
•L1 && H2 : duty cycle 32.1%; Total coincident time: 131 hrs

•H1 && H2 : duty cycle 46.1%; Total coincident time: 188 hrs

Triple Coincidence: L1, H1, and H2 : duty cycle 23.4% ; total 95.7 hours

Strain Sensitivities During S1

Upper limits as presented at AAAS meeting Feb 2003

Stochastic backgrounds

LIGO

 Upper limit Ω₀ < 72.4 Limit from Big Bang (H1- H2 pair) Nucleosynthesis < 10⁻⁴

Standard Inflation Prediction < 10⁻¹⁵

- Neutron star binary inspiral
 - Range of detectability < 200 kpc</p>
 - $(1.4 1.4 M_{SUN} NS binary with SNR = 8)$
 - Coalescence Rate for Milky Way equivalent galaxy < 164 /yr 90% CL</p>
- Periodic sources PSR J1939+2134 at 1283 Hz
 - GW radiation h < 2 10⁻²² 90% CL

(expect $h \sim 10^{-27}$ if pulsar spindown entirely due GW emission)

- Burst sources
 - Upper limit *h* < 5 10⁻¹⁷ 90% CL
- S2 is ~10x more sensitive and ~4x longer

Strain Sensitivity coming into S2

Displacement Sensitivity (Science Run 1, Sept. 2002)

LIGO Science Has Started

- LIGO has started taking data
- First science run (S1) last summer
 - Collaboration has carried out first analysis looking for
 - ✓ Bursts

LIGO

- ✓ Compact binary coalescences
- ✓ Stochastic background
- ✓ Periodic sources

Second science run (S2) ended last week

- Sensitivity is ~10x better than S1
- Duration is ~ 4x longer
 - Bursts \rightarrow 4x lower rate limit & 10x lower strain limit
 - Inspirals → reach > 1 Mpc -- includes M31 (Andromeda)
 - Stochastic background \rightarrow limits on $\Omega_{GW} < 10^{-2}$
 - Periodic sources → limits on h_{max} ~ few x 10⁻²³ (ε ~ few x 10⁻⁶ @ 3.6 kpc)

The next-generation detector Advanced LIGO (aka LIGO II)

Now being designed by the LIGO Scientific Collaboration

Goal:

LIGO

- Quantum-noise-limited interferometer
- Factor of ten increase in sensitivity
- Factor of 1000 in event rate.
 One day > entire
 2-year initial data run

□ Schedule:

- Begin installation: 2006
- Begin data run: 2008

A Quantum Limited Interferometer

Optimizing the optical response: Signal Tuning

Advance LIGO Sensitivity: Improved and Tunable

Detection of candidate sources

LIGO

Implications for source detection

NS-NS Inpiral

- Optimized detector response
- NS-BH Merger
 - NS can be tidally disrupted by BH
 - Frequency of onset of tidal disruption depends on its radius and equation of state
 broadband detector

- Merger phase → non-linear dynamics of highly curved space time
 ⇒ broadband detector
- Supernovae
 - Stellar core collapse → neutron star birth
 - If NS born with slow spin period (< 10 msec) hydrodynamic instabilities ⇒ GWs

Source detection

Spinning neutron stars

- Galactic pulsars: non-axisymmetry uncertain
- Low mass X-ray binaries: If accretion spin-up balanced by GW spin- down, then X-ray luminosity → GW strength Does accretion induce non-axisymmetry?

Stochastic background

GW energy / closure energy

• $\Omega_{GW}(f \sim 100 \text{ Hz}) = 3 \times 10^{-9} \text{ (standard inflation } 10^{-15}\text{)}$

(primordial nucleosynthesis <math> 10^{-5})

(exotic string theories \rightarrow 10⁻⁵)

LISA - The Overview

Opening a New Observational Window on the Universe

Concept

- 3 spacecraft constellation separated by 5 x10⁶ km.
- Earth-trailing solar orbit
- Drag-free proof masses
- Interferometry to measure changes in distance between masses caused by gravitational waves
- Partnership between ESA, JPL and GSFC

- Science Goals
 - Observe and measure the rate of massive and super-massive black hole mergers to high red shift
 - Observe the inspiral and merger of compact stellar objects into massive black holes
 - Detect gravitational radiation from compact binary star systems in our galaxy
 - Observe gravitational radiation from the early universe

LISA and AdLIGO Sensitivities

Opening a New Observational Window on the Universe

Astrophysical Sources

- Mapping the gravitational wave sky between 0.1 mHz and 1 Hz will be an exploration of astrophysical systems involving compact objects such as
 - Supermassive black holes ($10^5-10^7 M_{\odot}$)
 - Intermediate mass black holes ($10^2-10^5 M_{\odot}$)
 - Stellar mass black holes (1-10² M_{\odot})
 - Neutron stars (~1.4 M_{\odot})
 - White dwarfs (O 1 M_{\odot})
 - ... which are rapidly accelerated in non-spherical mass distributions, typically close binary systems
- Some of these objects may not radiate Other unexpected objects may exist

The LISA Spectrum

Opening a New Observational Window on the Universe

NAS

New Instrument, New Field, the Unexpected...

Binary Inspiral Sensitivity

LIGO Unmodeled Burst Sources Supernovae and Core Collapse

Sensitivity to Pulsars

LIGO

Stochastic Background

Stochastic Background Sensitivity

LIGO

Fraction of energy density in Universe in gravitational waves:

$$\frac{\rho_{\rm GW}}{\rho_{\rm critical}} = \int \Omega_{\rm GW}(f) \, d\ln f$$

Constraint from nucleosynthesis:

$$\int \Omega_{\rm GW}(f) \, d\ln f < 10^{-5}$$

More recent processes may also produce stochastic backgrounds