8.251 - Homework 1

B. Zwiebach

Due Tuesday, February 13.

1. (10 points)

Quick calculation 2.2 (p. 20).
Quick calculation 2.3 (p. 24).
2. (10 points) A matrix L that satisfies (2.44) defines a Lorentz transformation. Show that
(a) If L_{1} and L_{2} are Lorentz transformations so is the product $L_{1} L_{2}$.
(b) If L is a Lorentz transformation so is the inverse matrix L^{-1}.
(c) If L is a Lorentz transformation so is the transpose matrix L^{T}.
3. (10 points) Problem 2.2, part (a) only.
4. (10 points) Problem 2.3.
5. (10 points) Consider the (x, y) plane described with a complex coordinate $z=x+i y$. We have seen that the identification $z \sim e^{\frac{2 \pi i}{N}} z$ with $N \geq 2$ a positive integer, can be used to construct a cone. Consider two relatively prime integers M and N, with $M<N$ and the identification

$$
\begin{equation*}
z \sim e^{2 \pi i \frac{M}{N}} z, \quad M, N \geq 2 \tag{1}
\end{equation*}
$$

One may naively believe that a fundamental domain is provided by the points that satisfy the constraint $0 \leq \arg (z)<2 \pi \frac{M}{N}$. Experiment with low values of M and N to convince yourself that this is not a fundamental domain. Determine a fundamental domain for the identification in (1).

Hint: There is a lovely theorem that follows from Euclid's algorithm for the greatest common divisor: Given two integers a and b, relatively prime, there exist integers m and n such that $m a+n b=1$ (m and n are not unique). This result should be useful once you have thought a bit about the problem. Finding m and n is not easy unless you use Euclid's algorithm: try, for example, solving $187 m+35 n=1$, for some integers m and n.
6. (10 points) Problem 2.4.
7. (20 points) Problem 2.7

