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Quiz 2 

Name SOLUTIONS (please print) 
Last First 

1. Work any 7 of the 10 problems - indicate clearly which 7 you want graded. 
2. Spend up to 20 minutes reviewing all the problems, and select 7. 
3. Immediately after this you have two continuous hours to work the problems. 
4. All problems are worth 14 points. 
5. Closed book exam; you may use two pages of notes, and a calculator. 
6. Wherever possible, try to solve the problems using general analytic expressions. 

Plug in numbers only as a last step. 
7. If you have any questions, e-mail the Instructor. 

Time Started: Time Stopped: 

Signature 

Problem Grade Grader 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Total 



USEFUL CONSTANTS 

Constant cgs units mks units 

c (speed of light) 
G (gravitation constant) 
k (Boltzmann’s constant) 
h (Planck’s constant) 
mproton 

eV (electron Volt) 
M� (solar mass) 
L� (solar luminosity) 
R� (solar radius) 
σ (Stefan-Boltzmann cons) 
Å(Angstrom) 

3 × 1010 

7 × 10−8 

1.4 × 10−16 

6.6 × 10−27 

1.6 × 10−24 

1.6 × 10−12 

2 × 1033 

4 × 1033 

7 × 1010 

6 × 10−5 

10−8 

cm/sec 
dyne-cm2/g2 

erg/K 
erg-sec 
g 
erg 
g 
erg/sec 
cm 
erg/cm2-sec-K4 

cm 

3 × 108 

7 × 10−11 

1.4 × 10−23 

6.6 × 10−34 

1.6 × 10−27 

1.6 × 10−19 

2 × 1030 

4 × 1026 

7 × 108 

6 × 10−8 

10−10 

m/sec 
N-m2/kg2 

J/K 
J-sec 
kg 
J 
kg 
J/sec 
m 
J/m2-sec-K4 

m 
km (kilometer) 105 cm 103 m 
pc (parsec) 
kpc (kiloparsec) 
Mpc (megaparsec) 
year 
day 

3 × 1018 

3 × 1021 

3 × 1024 

3 × 107 

86400 

cm 
cm 
cm 
sec 
sec 

3 × 1016 

3 × 1019 

3 × 1022 

3 × 107 

86400 

m 
m 
m 
sec 
sec 

AU 
1� (arc minute) 

1.5 × 1013 

1/3400 
cm 
rad 

1.5 × 1011 

1/3400 
m 
rad 

1�� (arc second) 1/200, 000 rad 1/200, 000 rad 
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Problem 1 

A very hot star is detected in the galaxy M31 located at a distance of 800 kpc. The star has 
a temperature T = 6 × 105 K and a produces a flux of 10−12 ergs cm−2 sec−1 (10−9 W m−2) 
at the Earth. Treat the star’s surface as a blackbody radiator. 

a. Find the luminosity of the star. 

L = 4πD2FluxEarth = 10−124π(800 × 3 × 1021)2 = 7 × 1037 erg · s−1 

There was an error in the statement of the problem in that the mks units do not match the 
cgs value. In this case, a valid answer would be based on a flux that is 106 times larger. 

b. Compute the star’s radius. 

R = L/4πσT 4 
�1/2 

= 8.7 × 108 cm = 0.012 R

(The radius would be 103 times larger if you used the mks flux.) 

c. At what wavelength is the peak of the emitted radiation? 
Use the Wien displacement law: 

λmax = 0.29/T cm = 48 Å 
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Problem 2 

Spectra of a binary star system are recorded over a time interval of months. It is found that 
the wavelengths of the lines from one of the stars vary sinusoidally with a period of 7 days. 
The half amplitude of the wavelength shifts is Δλ/λ = 0.001. The spectrum from the other 
star is not detected. Exactly what information can be learned about the masses of the two 
stars? Be quantitative. (Hint: your answer should include the concept and numerical value 
of the “mass function” for this system.) 

Δλ v1
�

= = 10−3 

λ c 

v� = 3 × 107 cm · s−1 
1 

However, the “velocity” v1 is only the projection of the star’s velocity along the line of sight. 
If i is the orbital inclination angle, then v� = v1 sin i.1 

2πa1 sin i = (v1 sin i)P = (3 × 107 cm · s−1)(7 days) 

a1 sin i = 2.9 × 1012 cm 

From Kepler’s Third Law, we can construct the mass function, 

M2 sin
3 i (2π)2 (a1 sin i)3 

f (M ) = � =�2 G P 2 
, 

1 + M1 
M2 

which depends only upon known quantities. Since sin3 i/(1 + M1/M2)
2 < 1, f (M ) is a lower 

limit on M2. 
f (M ) = 3.9 × 1034 g = 19.5M
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Problem 3 

The figures below show H–R diagrams for two globular clusters: M3 and M5. (V is the 
apparent visual magnitude.) 

horizontal branch

blue
stragglers

giants

subgiants

main sequence

asymptotic
giant branch

a. Identify the various stellar evolutionary phases seen on the H–R diagram for M3. You 
may write your answers directly on the plot. 
b. Find the relative distances to the two clusters, i.e., dM3/dM5. 

The horizontal branch lies at magnitude 15.5 for M3 and 15.1 for M5, and the main sequence 
turnoffs are at 18.8 and 18.25. These give an average magnitude difference of 0.47. 

dM3
0.47 = 5 log 

dM5 

dM3 
= 1.24 

dM5 

c. What are the predominant nuclear reactions powering the different evolutionary phases, 
and where are they taking place within the star (e.g., in a shell or in the core)? You need 
not write down specific nuclear reactions, simply state what elements are being “burned.” 

main sequence: H → He in core 
giants: H → He in shell 
asymptotic giant branch: H → He and He C in shell →
horizontal branch: He C and O in core → 

d. How many main-sequence stars with V = 20 equal the brightness of a single giant with 
V	 = 12.5? � � 

F 
V = −2.5 log 

F0 



� �
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One star has V = 20, so 20 = −2.5 log 
0 

F , or F/F0 = 10−8 .
F

N stars have normalized flux NF/F0 and V = 12.5. 

NF F 
V = 12.5 = −2.5 log = −2.5 log − 2.5 log N = 20 − 2.5 log N 

F0 F0 

N = 103 
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Problem 4 

Make a sketch of our Galaxy (top view and side view), including any qualitative structures 
contained therein and the regions that different types of objects occupy. Mark any size scales 
you know. If the Sun (more precisely, the local standard of rest) is orbiting the Galactic 
center at 220 km/sec, estimate the mass of the Galaxy interior to the Sun’s orbit (in units 
of M�). Choose whatever distance to the Galactic center you happen to know. 

An estimate of the mass contained within the Sun’s orbit around the Galaxy is:


2 
� 

R 
v

M(< R) � 
(220 × 105)2(8 kpc) 

G 

M(< R) � 1.7 × 1044 grams � 9 × 1010 M

GM(< R)

R2 
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Problem 5 

Suppose we model the Galactic disk as a uniform slab of material with full thickness H in 
the ˆ x and ˆz direction, and effectively infinite in the ˆ y directions. The density of matter for 
z < H/2 is ρ0, while for |z| > H/2, ρ0 drops abruptly to 0. Find and sketch the gravi| |
tational field for all values of z (both + and −). (Hint: use Gauss’ law, but applied to gravity.) 

Imagine drawing a Gaussian cylinder with ends of area A located at ±z (i.e. symmetric 
placed on either side of the mid-plane). Gauss’ Law for gravity says 

� dA = −4πG ρ dV. g · 
cylinder interior 

The left-hand-side is always −2gA; the right-hand-side is −4πGρ0(2zA) if z < H/2 and 
−4πGρ0(HA) if z > H/2. So �g = 4πGρ0 z inside the disk and �g = 2πGρ0H outside.| | | | | | 

This plot shows the z-component of �g, in units of Gρ0H. 

Gravitational Field
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Problem 6 

Recent measurements find that the Oort A and Oort B coefficients for our Galaxy are 14 
1km sec−1 kpc−1 and -12 km sec−1 kpc−1, respectively. (Recall that A ≡ − R(dω/dR) and 
2 

B ≡ A − ω.) 

a. What assumptions go into the Oort equations from which the A and B coefficients are 
derived? 

ω(R) is a monotonically decreasing function of R 
All orbits are circular 
Only stars out to a distance of ∼ 1 kpc are used 

b. What measurements are needed to determine A and B? 

Measurements of vr , vt (proper motion), and the distance to the stars are needed as a function 
of l. 

c. Use the above values of A and B to find the rotation frequency (or period) of the Sun 
around the Galaxy. 

B = A − ω 

ω = A −B = 14 − (−12) = 26kmsec−1kpc−1 

ω = 26 km/sec/3 × 1016 km 

2π 
ω = 8.7 × 10−16 radians/sec = 

P 

P � 7 × 1015 sec = 250 million years 

d. What can we learn about ω(R) for the Galaxy from the Oort method? 

1 R dω 
A = ω � 14−

2 ω dR 

d ln R 28 28 
= 

d ln ω 
−

ω 
= −

26 
� −1 
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Problem 7 

Short answer questions: 

a. Explain why the magnitude difference, U − B of a star is a measure of its temperature.


U = −2.5 log FU + contsant


B = −2.5 log FB + sameconstant


FU
U − B = −2.5 log 

FB 

So U − B measures the ratio of fluxes at two different wavelengths, and thereby the temper
ature. 

b. Explain what the “Oort limit” is in the context of determining the local mass density in 
our part of the Galaxy. What is the underlying physics involved? 

The “Oort limit” supposes that most of the mass lies close to the galactic plane, and so g is 
constant. In equilibrium, the particles of matter are exponentially distributed, with a scale 
height that depends upon �v2� and g in a known way. By measuring the scale height and 
�, we determine g, and thus the local mass density. �v

c. What is a log N − log F plot? What slope does it have if the objects being observed have 
a spherically symmetric distribution? 

Such a plot shows the number of objects visible (N ) versus their luminosity, both plotted 
on logarithmic scales. Since the flux from an measured at Earth goes as d−2, the maximum 
distance out to which objects of a given type may be seen goes as the inverse square root of 
the luminosity. The volume of space in which we can view the objects (which is proportional 
to N ) goes as the cube of d. So the slope of a log-log plot will be −3/2. 
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Problem 8 

We will learn in lecture that for a gas supported by degenerate electron pressure, the pressure 
is given by: 

P = Kρ5/3 

where K is a constant and ρ is the mass density. If a star is totally supported by degenerate 
electron pressure, use a dimensional analysis of the equation of hydrostatic equilibrium: 

dP 
= −gρ 

dr 

to determine how the radius of such a star depends on its mass, M . 

Kρ5/3 GM M 
R 

� 
R2 R3 

M 
ρ ∼ 

R3 

KM 5/3 GM 2 

RR5 
� 

R5 

K 
R � 

GM 1/3 
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Problem 9 

Take the total energy (potential plus thermal) of the Sun to be given by the simple expression: 

GM 2 

E � − 
R 

where M and R are the mass and radius, respectively. Suppose that the energy generation 
in the Sun were suddenly turned off and the Sun began to slowly contract. During this 
contraction its mass, M , would remain constant and, to a fair approximation, its surface 
temperature would also remain constant at ∼ 5800 K. Assume that the total energy of the 
Sun is always given by the above expression, even as R gets smaller. Write down a simple 
(differential) equation relating the power radiated at Sun’s surface with the change in its 
total energy (using the above expression). Integrate this equation to find the time (in years) 
for the Sun to shrink to 1/2 its present radius. 

GM 2 dR 
L = 4πσR2T 4 = dE/dt = 

R2 dt 
t� 0.5R dR 4πσT 4 

= dt 
R4 

− 
0 GM 2 

R 

1 1 4πσT 4 

+ = t−
3(R/2)3 3R3 

− 
GM 2 

GM 2 8 1 
t = 

12πσT 4 R3 
−

R3 

7GM 2 

t = = 2.2 × 1015sec = 75 million years 
12πσT 4R3 



Problem 10 

The principal nuclear reaction in the Sun combines 4 hydrogen nuclei (1H
1) into a 2He4 

nucleus. Later in the Sun’s evolution, three 2He4 nuclei will be fused into a 6C
12 nucleus 

(via the so-called “triple α” reaction). The atomic mass excesses of 1H1 , 2He4 and 6C12 are 
7.29, 2.42, and 0 MeV, respectively. Use this information to find the efficiency of hydrogen 
burning compared with He burning. You can define ‘efficiency’ as the net fractional mass 
lost in the reaction, ΔM/M . (Note: atomic mass excess = (M − A.amu)c2, i.e., the actual 
mass of an atom minus a reference mass times its integer atomic mass, and then converted to 
MeV energy units.) Finally, it may be helpful to know that the rest mass energy associated 
with 1 amu is ∼ 940 MeV. 

41H
1 → 2He 4 + ΔE1 

4 × 7.29 − 2.42 = ΔE1 = 27 MeV 

32He 4 → 6C
12 + ΔE2 = 7.26 MeV 

27 MeV 
�H = 

4 × 940 MeV 
� 0.007 

7.3 MeV 
�He = 

12 × 940 MeV 
� 0.0007 


