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PROBLEM 1: GEODESICS IN A FLAT UNIVERSE (25 points) 

According to general relativity, in the absence of any non-gravitational forces 
a particle will travel along a spacetime geodesic. In this sense, gravity is reduced 
to a distortion in spacetime. 

Consider the case of a flat (i.e., k = 0) Robertson–Walker metric, which has 
the simple form  	  

ds2 = −c 2dt2 + a 2(t) dx2 + dy2 + dz2 . 

Since the spatial metric is flat, we have the option of writing it in terms of Cartesian 
rather than polar coordinates. Now consider a particle which moves along the x-
axis. (Note that the galaxies are on the average at rest in this system, but one can 
still discuss the trajectory of a particle which moves through the model universe.) 

(a)	 (8 points) Use the geodesic equation to show that the coordinate velocity com­
puted with respect to proper time (i.e., dx/dτ ) falls off as 1/a2(t). 

(b)	 (8 points) Use the expression for the spacetime metric to relate dx/dt to dx/dτ . 

(c)	 (9 points) The physical velocity of the particle relative to the galaxies that it 
is passing is given by 

v = a(t) 
dx 

. 
dt 

Show that the momentum of the particle, defined relativistically by 

mv 
p = -

1 − v2/c2 

falls off as 1/a(t). (This implies, by the way, that if the particle were described 
as a quantum mechanical wave with wavelength λ = h/|Pp |, then its wavelength 
would stretch with the expansion of the universe, in the same way that the 
wavelength of light is redshifted.) 
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PROBLEM 2: METRIC OF A STATIC GRAVITATIONAL FIELD (25 
points) 

In this problem we will consider the metric 

3  23  
ds2 = − c 2 + 2φ(Px) dt2 + dxi , 

i=1

which describes a static gravitational field. Here i runs from 1 to 3, with the 
identifications x1 ≡ x, x2 ≡ y, and x3 ≡ z. The function φ(Px) depends only on the 

1 2spatial variables Px ≡ (x , x , x3), and not on the time coordinate t. 

(a)	 (5 points) Suppose that a radio transmitter, located at Pxe, emits a series of 
evenly spaced pulses. The pulses are separated by a proper time interval ΔTe, 
as measured by a clock at the same location. What is the coordinate time inter­
val Δte between the emission of the pulses? (I.e., Δte is the difference between 
the time coordinate t at the emission of one pulse and the time coordinate t at 
the emission of the next pulse.) 

(b)	 (5 points) The pulses are received by an observer at Pxr, who measures the time 
of arrival of each pulse. What is the coordinate time interval Δtr between 
the reception of successive pulses? 

(c)	 (5 points) The observer uses his own clocks to measure the proper time interval 
ΔTr between the reception of successive pulses. Find this time interval, and 
also the redshift z, defined by 

ΔTr1 + z = .
ΔTe 

First compute an exact expression for z, and then expand the answer to lowest 
order in φ(Px) to obtain a weak-field approximation. (This weak-field approxi­
mation is in fact highly accurate in all terrestrial and solar system applications.) 

(d)	 (5 points) A freely falling particle travels on a spacetime geodesic xµ(τ), where 
τ is the proper time. (I.e., τ is the time that would be measured by a clock 
moving with the particle.) The trajectory is described by the geodesic equation 

d dxν 1 dxλ dxσ 

gµν = (∂µgλσ) ,
dτ dτ 2 dτ dτ 

where the Greek indices (µ, ν, λ, σ, etc.) run from 0 to 3, and are summed over 
when repeated. Calculate an explicit expression for 

d2xi 

dτ2 
, 

[ ]
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valid for i = 1, 2, or 3. (It is acceptable to leave quantities such as dt/dτ or 
dxi/dτ in the answer.) 

(e)	 (5 points) In the weak-field nonrelativistic-velocity approximation, the answer 
to the previous part reduces to 

d2	 ix
= −∂iφ , 

dt2 

so φ(Px) can be identified as the Newtonian gravitational potential. Use this 
fact to estimate the gravitational redshift z of a photon that rises from the 
floor of this room to the ceiling (say 4 meters). (One significant figure will be 
sufficient.) 

PROBLEM 3: CIRCULAR ORBITS IN A SCHWARZSCHILD MET­
RIC (30 points) 

READ THIS: This problem was Problem 16 of Review Problems for Quiz 2 of 
2011, and the solution is posted as http://web.mit.edu/8.286/www/quiz11/ecqr2­
1.pdf. Like Problem 4 of Problem Set 3, but unlike all other homework problems so 
far, in this case you are encouraged to look at the solutions and benefit from them. 
When you write your solution, you can even copy it verbatim from these solutions 
if you wish, although obviously you will learn more if you think about the solution 
and write your own version. 

The Schwarzschild metric, which describes the external gravitational field of 
any spherically symmetric distribution of mass, is given by 

2GM	 2GM −1 

ds2 = −c 2dτ2 = − 1 − c 2dt2 + 1 − dr2 + r 2dθ2 + r 2 sin2 θ dφ2 ,
2	 2rc	 rc

where M is the total mass of the object, 0 ≤ θ ≤ π, 0 ≤ φ < 2π, and φ = 
2π is identified with φ = 0. We will be concerned only with motion outside the 
Schwarzschild horizon RS = 2GM/c2, so we can take r > RS . (This restriction 
allows us to avoid the complications of understanding the effects of the singularity 
at r = RS .) In this problem we will use the geodesic equation to calculate the 
behavior of circular orbits in this metric. We will assume a perfectly circular orbit 
in the x-y plane: the radial coordinate r is fixed, θ = 90◦, and φ = ωt, for some 
angular velocity ω. 

(a)	 (7 points) Use the metric to find the proper time interval dτ for a segment of the 
path corresponding to a coordinate time interval dt. Note that dτ represents 
the time that would actually be measured by a clock moving with the orbiting 
body. Your result should show that  

2ω2dτ 2GM r
=	 1 − − . 

dt rc2 c2 

( ) ( )

http://web.mit.edu/8.286/www/quiz11/ecqr2-1.pdf
http://web.mit.edu/8.286/www/quiz11/ecqr2-1.pdf
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Note that for M = 0 this reduces to the special relativistic relation dτ/dt = -
1 − v2/c2, but the extra term proportional to M describes an effect that is 

new with general relativity— the gravitational field causes clocks to slow down, 
just as motion does. 

(b)	 (7 points) Show that the geodesic equation of motion (Eq. (5.65)) for one of 
the coordinates takes the form 

2	 21 ∂gφφ dφ 1 ∂gtt dt
0 =	 + .

2 ∂r dτ 2 ∂r dτ 

(c)	 (8 points) Show that the above equation implies 
2	 2

dφ GM dt 
r =	 ,

2dτ r dτ 

which in turn implies that 
GM 

rω2 = .
2r

Thus, the relation between r and ω is exactly the same as in Newtonian me­
chanics. [Note, however, that this does not really mean that general relativity 
has no effect. First, ω has been defined by dφ/dt, where t is a time coordi­
nate which is not the same as the proper time τ that would be measured by a 
clock on the orbiting body. Second, r does not really have the same meaning 
as in the Newtonian calculation, since it is not the measured distance from the 
center of motion. Measured distances, you will recall, are calculated by inte­
grating the metric, as for example in Problem 1 of Problem Set 5, A Circle 
in a Non-Euclidean Geometry. Since the angular (dθ2 and dφ2) terms in the 
Schwarzschild metric are unaffected by the mass, however, it can be seen that 
the circumference of the circle is equal to 2πr, as in the Newtonian calculation.] 

(d)	 (8 points) Show that circular orbits around a black hole have a minimum value 
of the radial coordinate r, which is larger than RS . What is it? 

PROBLEM 4: GAS PRESSURE AND ENERGY CONSERVATION (25 
points) 

In this problem we will pursue the implications of the conservation of energy. 
Consider first a gas contained in a chamber with a movable piston, as shown below: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )
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Let U denote the total energy of the gas, and let p denote the pressure. Suppose 
that the piston is moved a distance dx to the right. (We suppose that the motion 
is slow, so that the gas particles have time to respond and to maintain a uniform 
pressure throughout the volume.) The gas exerts a force pA on the piston, so the 
gas does work dW = pAdx as the piston is moved. Note that the volume increases 
by an amount dV = Adx, so dW = pdV . The energy of the gas decreases by this 
amount, so 

dU	 = −pdV . (P4.1) 

It turns out that this relation is valid whenever the volume of a gas is changed, 
regardless of the shape of the volume. 

Now consider a homogeneous, isotropic, expanding universe, described by a 
scale factor a(t). Let u denote the energy density of the gas that fills it. (Remember 
that u = ρc2, where ρ is the mass density of the gas.) We will consider a fixed 
coordinate volume Vcoord, so the physical volume will vary as 

Vphys(t) = a 3(t)Vcoord .	 (P4.2) 

The energy of the gas in this region is then given by 

U = Vphysu .	 (P4.3) 

(a)	 (9 points) Using these relations, show that 

d	
a 3ρc2 = −p

d 
(a 3) , (P4.4) 

dt	 dt 
and then that   ȧ p

ρ̇ = −3 ρ + ,	 (P4.5) 
2a c


where the dot denotes differentiation with respect to t.
 

(b)	 (8 points) The scale factor evolves according to the relation 

ȧ
2 8π kc2 

= Gρ − .	 (P4.6) 
a 3 a2 

Using Eqs. (P4.5) and (P4.6), show that 

4π 3p 
ä = − G ρ + a .	 (P4.7) 

3 c2 

This equation describes directly the deceleration of the cosmic expansion. Note 
that there are contributions from the mass density ρ, but also from the pressure 
p. 

(c)	 (8 points) So far our equations have been valid for any sort of a gas, but let us 
now specialize to the case of black-body radiation. For this case we know that 
ρ = bT 4, where b is a constant and T is the temperature. We also know that as 
the universe expands, aT remains constant. Using these facts and Eq. (P4.5), 
find an expression for p in terms of ρ. 

( )

( )
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PROBLEM 5: THE EFFECT OF PRESSURE ON COSMOLOGICAL 
EVOLUTION (25 points) 

A radiation-dominated universe behaves differently from a matter-dominated 
universe because the pressure of the radiation is significant. In this problem we 
explore the role of pressure for several fictitious forms of matter. 

(a)	 (8 points) For the first fictitious form of matter, the mass density ρ decreases 
as the scale factor a(t) grows, with the relation 

1 
ρ(t) ∝ . 

a6(t) 

What is the pressure of this form of matter? [Hint: the answer is proportional 
to the mass density.] 

(b)	 (9 points) Find the behavior of the scale factor a(t) for a flat universe dominated 
by the form of matter described in part (a). You should be able to determine 
the function a(t) up to a constant factor. 

(c)	 (8 points) Now consider a universe dominated by a different form of fictitious 
matter, with a pressure given by 

1 
p = ρc2 .

2 

As the universe expands, the mass density of this form of matter behaves as 

1 
ρ(t) ∝ . 

an(t) 

Find the power n. 

PROBLEM 6: TIME EVOLUTION OF A UNIVERSE WITH MYSTE­
RIOUS STUFF (15 points) 

Suppose that a model universe is filled with a peculiar form of matter for which 

1 
ρ ∝ . 

a5(t) 

Assuming that the model universe is flat, calculate 

(a)	 (4 points) The behavior of the scale factor, a(t). You should be able to find 
a(t) up to an arbitrary constant of proportionality. 

(b)	 (3 points) The value of the Hubble parameter H(t), as a function of t. 

(c)	 (4 points) The physical horizon distance, .p,horizon(t). 

(d)	 (4 points) The mass density ρ(t). 
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PROBLEM 7: EFFECT OF AN EXTRA NEUTRINO SPECIES (15 
points) 

According to the standard assumptions (which were used in the lecture notes), 
there are three species of effectively massless neutrinos. In the temperature range 
of 1 MeV < kT < 100 MeV, the mass density of the universe is believed to have 
been dominated by the black-body radiation of photons, electron-positron pairs, 
and these neutrinos, all of which were in thermal equilibrium. 

(a)	 (5 points) Under these assumptions, how long did it take (starting from the 
instant of the big bang) for the temperature to fall to the value such that 
kT = 1 MeV? 

(b)	 (5 points) How much time would it have taken if there were one other species 
of massless neutrino, in addition to the three which we are currently assuming? 

(c)	 (5 points) What would be the mass density of the universe when kT = 1 MeV 
under the standard assumptions, and what would it be if there were one other 
species of massless neutrino? 

Total points for Problem Set 6: 160. 
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