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PROFESSOR: OK, in that case, let's get started. As usual, I like to begin by giving a review of what

we talked about last time. This time on slides instead of on the blackboard. We're

talking mainly about relativistic energy, or relativistic energy and momentum, and

pressure, sometimes.

The key equation is probably the most famous equation in physics, Einstein's e

equals m c squared. And I gave some numerical examples. I actually looked up

some more numbers since then, when I was revising the lecture notes. So these are

slightly more up to date. But it's still true that if you could burn matter at the rate of

one kilogram per hour, you would have about one and a half times the total power

output of the world.

And that's apparently still valid in 2011. I only had 2008 figures, actually, at the

lecture last time. And if you imagine the 15-gallon tank of gasoline, and you could

figure out how much that-- what it's mass is, and convert that to energy, it turns out

that a 15-gallon tank of gasoline could power the world for about two and half days,

if you could convert all of it into energy.

The catch, of course, is that we can't convert matter into energy. We can't get

around the problem that, at least at the energies that we deal with, baryon number.

And that number of protons and neutrons is conserved, so we can't make protons

and neutrons disappear. And that means that we're limited in what we can do.

In particular, one of the most efficient things we can do is fission uranium 235. But

when uranium 235 undergoes fission, less than 1/10 of 1% of the mass is actually

converted into energy, which is why we can't actually avail ourselves of these

fantastic numbers that would apply, if we could literally just convert matter into
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energy.

We went on to talk about the relativistic definitions of energy and momentum, and

how they come together to form a Lorentz four vector, and the underlying theme

here is that we consider ourselves users of special relativity. Most of you I know

have taken special relativity courses, and for those of you who have, this is a

review. For those you who have not, and there are some of those also, no need to

panic.

I intend to tell you every fact that you need to know about special relativity. I won't

tell you how to derive them all, but I'll tell you all you'll need to know for this class.

So in particular, it's useful for this class to recognize that energy and momentum

can be put together into a four vector, where the zeroth component is the energy

divided by the speed of light. And the three spatial components are just the three

components of the spatial momentum, although they have to be defined

relativistically.

The relativistic definition of momentum, at least how it relates to velocity, is that it's

equal to gamma times the rest mass times the velocity, where gamma is the famous

factor that we've been seeing all along when we've talked about relativity. The

Lorentz contraction factor, one over the square root of 1 minus v squared over c

squared. The energy of a particle, relativistically, is the same gamma, times m 0

times c squared, and it can also be written as the square root of m 0 c squared

squared, plus the momentum squared, times c squared.

Since the momentum forms a four vector, its Lorentz and variant square should be

Lorentz and variant, and that means that the momentum squared minus p 0

squared should be the same in all inertial reference frames. And that's just equal

when you put in what p 0 means, the momentum squared minus the energy

squared, divided by c 0 squared.

And to know what value it's equal to in all frames, it's efficient to know what it's equal

to in one frame. And the one frame where we do know what it's equal to is the rest

frame of a particle. So in the rest frame, the momentum vanishes, and the energy is
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just m 0 c squared. So in the rest frame, we can evaluate this, and we get minus m

0 c squared squared. And that means that has to be the value in every frame. And

this in fact is the easy way to derive the relationship between energy and

momentum.

If we go back, the equation we had relating energy and momentum is really exactly

that equation, rearranged. Just to give an example of how this works, when we

actually have energy exchanges, I pointed out that we could talk about the energy

of a hydrogen atom. And because energy and mass are equivalent, the hydrogen

atom clearly has a little bit less energy than an isolated proton, plus an isolated

electron.

Because when you bring them together there's a binding energy, and that binding

energy is called delta e, and has a value of 13.6 electron volts for the ground state

of hydrogen. So that tells us the mass of an hydrogen atom is not the sum of the

two masses, but rather has this correction factor, because we've taken out a little bit

of energy for the binding. And that means we've taken out a little bit of mass.

OK, then we talked about the mass density of radiation and how-- building up to

how that will affect the universe. And we said that the mass density of radiation is

just the energy density divided by c squared. And that can be taken, really, as a

definition of what we call relativistic mass, and hence relativistic mass density.

But the important point is that this mass density actually does gravitate the same as

any other mass density of the same value. It really does create gravity in the same

way. Now I mentioned that things are much more complicated if you want to talk

about the gravitational field produced by a single moving particle.

That's asymmetric, the velocity of the particle shows up in the equations that

describe the metric surrounding a single moving particle. But if you have a gas of

particles moving at high velocities, where the velocities nonetheless average to

zero, which tends to happen, in a gas at least in the rest frame of the gas.

Then that gas will produce gravitational fields, just like a static mass density. Where
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the mass density is this relativistic energy divided by c squared, the relativistic

definition of the mass density. It's also useful to know that the photon-- if we want to

describe it as a particle, is a particle of zero rest mass. Which means that it can

never be at rest, it always moves at the speed of light.

And it also means that its energy can be arbitrarily small, because the energy is

proportional of momentum, and the momentum of a photon can be as small as you

like. For giving frequency, of course, the energy of a photon is fixed. It's h times nu

but if you're allowed to vary the frequency, which you can do if you just look at it in

different frames, you can make the energy as small as you like.

And the famous equation then, p squared minus e squared c squared, which would

have on the right, minus m 0 squared c to the 4th m 0 squared c squared, excuse

me-- has zero on the right hand side, because m 0 is 0 And that means that for

photons, the energy is just the speed of light times the momentum. And that's a

famous relationship that photons obey.

Now, thinking about how this gas of photons will behave in the universe, we realized

immediately that it does not behave the same way as a mass density of ordinary

non-relativistic particles. Which is what we have been dealing with to date. The

important difference is that in both cases, the number density falls off like 1 over a

cubed, as the universe expands, these particles are not created and destroyed in

significant numbers, they just persevere.

So the number density of either non-relativistic particles, or photons, just falls off like

one over the volume, as the volume increases and the number density dilutes. But

what makes photons different from non-relativistic particles, is that a non-relativistic

particle will maintain the energy of that particle as the universe expands, but

photons will redshift as the universe expands.

So each photon will itself lose energy. And it loses energy proportional to one over

the scale factor. And that's just because the frequency shift proportionally to the

scale factor. And that means that the energy per photon shifts, because quantum

mechanically we know that the energy of a photon is proportional to its frequency.
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So if the frequency redshifts so must the energy. In exactly the same way, 1 over a f

t.

Yes, question?

AUDIENCE: You said previously that neutrinos behave like radiation in the sense that theta

energy falls is 1 over a. What is it about them that makes this happen? Because

there are also particles with standard kinetic energy, right?

PROFESSOR: OK, the question, in case you didn't hear it, is why-- how did neutrinos fit in here?

I've made the claim that neutrinos act like radiation in the early universe, but

neutrinos have a non-zero mass, so they should obey the standard formulas for

particles with nonzero masses. The answer to that is-- there is, I think, a simple

answer, which is that as long as the energy is large compared to the mass, particles

with masses will still act like massless particles.

It doesn't really matter if the mass is zero or not, the key thing, really, is this

equation. So if the term on the right hand side is small compared to either of the two

on the left, it's not much different from being zero. And that's what happens for

neutrinos in the early universe. And we'll see soon that if you go to early enough

times, it's true even for electron-positron pairs. They will also act like radiation. Any

particle will act like radiation as long as the energy is large compared to the rest

energy.

So getting back to the discussion of the early universe, if the energy of each photon

falls off like one over the scale factor, and the number density falls off like one over

the scale factor cubed, it means that the energy density, and hence, the mass

density of radiation will fall off like one over a to the fourth, in contrast to the one

over a cubed, that we found when we were talking about non-relativistic matter.

And that, of course, is going to make a difference. Because those issues play a key

role in our discussions about how the universe evolved. An important feature, which

we see immediately, is that if we extrapolate backwards in time, since the radiation

mass density is falling off like one over a to the fourth, and the matter density is
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falling off like one over a cubed, it means that as you go back in time, the radiation

becomes more and more important relative to the matter, by factor of the scale

factor.

So if we go back far enough, we will even find a time when the mass density in

radiation equaled the mass density in non-relativistic matter. And we calculated

about when that would be. We said that the energy density in radiation today is

given by this number, 7 times 10 to the minus 14, joules per meter cubed.

And I just gave you this number, I didn't derive it yet. We will derive it, probably later

today. But for now, we're just accepting it. And that implies we can calculate from

that the ratio of the mass densities in radiation and ordinary matter. Here, we use

the fact that ordinary matter can be described by having an omega ratio to the

critical density of about 0.3. And we know how to calculate the critical density, and

that allowed us to calculate the density of ordinary matter.

And then this ratio turned out to be 3.1 times 10 to the minus four. So radiation in

today's universe is almost negligible in its contribution to the overall energy balance,

compared to non-relativistic matter. But if you extrapolate backwards, we know that

this ratio will vary as one over the scale factor. And we could figure out what

constants to put this equation by putting in the right constant, so that this equation

gives us the right value today. Where the right value today is 3.1 times 10 to the

minus four.

And notice that this works, if we let t be equal to t sub zero, this factors one and we

get 3.1 times 10 to the minus four. So these two factors together they have t zero

and the 3.1 times 10 to the minus four, are just the right factors to put in to give us

the right constant of proportionality in that equation. Having this equation, we can

then ask, how far back do we have to go, how much we have to change t, for the

ratio to be one? And that's a straightforward calculation.

And the ratio of the a is then just one over 3.1 times 10 to the minus four, or 3,200.

So if we talk about it in terms of a redshift, which is how astronomers always talk

about distances, or times, we're talking about going back to a redshift of 3,200. We
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can figure out what time, then, corresponds to also, if we know how a f t depends on

time.

And we do, approximately. For this calculation, I assume for now, we could do

better later, and we will-- but I assume for now that we could just treat the period

between matter radiation equality, so-called t x and now as being entirely described

by a matter-dominated universe. That's only a crude approximation, but it will get us

the right order of magnitude.

And we'll learn how to do better later in the course. So if we assume that, then t x is

just this number to the 3/2 power, cancelling the 2/3, times the age of universe, t

naught. And that turned out to be about 75,000 years. So somewhere in the range

of 100,000 years, 50,000 years, is the time in the history of the universe when

radiation ceased to be more important than matter.

And for earlier times than that, the radiation dominated. And that's what we refer to

as the radiation dominated era. Any questions?

OK, now I think we get on to what is really the important subject that we want to

understand, and most of this you did yourself on the homework. But I'll summarize

the argument here. We want to understand what this tells us about the Friedmann

Equations. And first, we'd like to understand what it says about pressure. Because it

turns out that pressure is the crucial issue in determining how fast row falls off as a

expands.

So if row is proportional to one over a cubed, we can just differentiate that, putting in

a constant proportionality temporarily, just to keep track of what we're doing. Since

we know how to differentiate qualities and we're less familiar with how to

differentiate proportionalities. But what we find immediately, is that row dot is then

minus 3, where that 3 is that 3, times a dot over a times row.

On the other hand, if row of t falls like one over a to the fourth, row dot is minus 4

times a dot over a times row, just by differentiation. So we get different expressions

from row dot, between radiation and matter. And we want to explore the
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consequences of that difference. It's related to the pressure of the gas, because we

can relate the pressure to row dot.

Because we know that as a gas expands, it loses energy, which is just equal in

amount to pdV. And we illustrated this by a piston thought experiment, but it's true in

general. So we can apply this famous formula, dU equals minus pdV, to a patch of

the expanding universe. And by a patch I mean some fixed region and coordinate

space.

So the total energy in that region of coordinate space will be the physical volume,

which will be a cubed times the coordinate volume. Which is going to cancel out of

this equation on both sides. So it's a cubed times the coordinate volume times the

energy density, which is row c squared. The rate of change of that is Du. And then

on the right hand side, we have minus p minus b times dV, which is the rate of

change of a cubed, again times the coordinate volume that we're talking about.

But that will cancel out on the two sides of the equation. So this is really just a

description for the universe of the dU equals minus pdV equation. And this can just

be rearranged, expanding the time derivatives, to give us row dot, and we get minus

3 a dot over a, times row plus p over c squared.

So this tells us how to relate row dot to the pressure. And it tells us that the formula

that we started with a long time ago, which just said that row fell off like 1 over a

cubed, was synonymous with saying the pressure is zero, for a gas of non-

relativistic particles, the pressure is negligible. But for radiation, clearly if we're going

to get a four instead of a three, the pressure will be non-negligible.

And in fact, it implies that the pressure is exactly equal to one third of the energy

density for a gas of radiation. OK, knowing that, we can now look back at the

Friedmann equations and ask, how do they stand up? Are they still consistent, or do

we have to modify something? And this is really the crucial point.

What we know are these three equations, which are the two Friedmann equations

and the equation for row dot. And we could see immediately that those equations
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are not independent of each other. The easiest thing to see is that if we start with

the top equation, we could differentiate it. And since the top equation has a dot in it,

when we differentiate, we'll get an equation for a double dot.

But the equation will also involve row dot, if we take the time derivative of that top

equation. But if we know what row dot is, we could put that in, and in the end we'll

get an equation for a double dot by itself. And it will in fact agree with the equation

on the middle line. Again, things would be inconsistent. Things are consistent, we

didn't make any mistakes.

If we derive the equation for a double dot by using the first and third of those

equations, then we'll get the second of those equations. But the catch is that now

we want to modify the third of those equations, the equations for row dot. And then

the Friedmann equations as we've written them will not be consistent anymore.

Because we'll have a different equation for row dot, we'll get a different equation for

a double dot.

So we have to decide what gives. What can we change to make everything

consistent? And here, the rigorous way of proceeding is to look at general relativity

and see what it says, and the answer we're going to write down is exactly what

general relativity says. But we can motivate the answer in, I think, a pretty sensible

way, by noticing that as the universe expands, we'd expect the energy density to

vary continuously, because energies are conserved.

And we also expect a dot to vary continuously, because basically, the mechanics of

the universe are like ton's laws. And velocities don't change discontinuously. You

can apply a force, and that causes velocities to have a rate of change. But velocities

don't change instantaneously, unless you somehow apply an infinite force.

And the same thing will be true with the universe. On the other hand, accelerations

can change instantaneously. You could change the force acting on a particle, in

principle, as fast as you want, and the acceleration of the particle will change at that

same rate. So if we look at these equations, we would expect that the first equation

and the third equation would not be allowed to involve the pressure.
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Because the pressure basically is a measure of a force. Pressures can change

instantaneously. So what you need to do, if we're going to make these equations

consistent in the presence of pressure-- which changes the row dot equation, the

only equation we can change is the second one. And then we can ask ourselves,

what do we have to change it to make the three equations consistent?

And this is what you looked at on your homework. And the answer is that the a

double dot equation has to be modified to give the equation at the bottom of the

screen here. And this is the correct form of the a double dot equation in cosmology.

And this is what we'll be using for the rest of the term, this is exactly what you would

get from general relativity.

As long as we're talking about homogeneous and isotropic universes, this formula

as exact as far as we know. OK, any questions about that? Yes.

AUDIENCE: Why when we derive that equation do we use--

PROFESSOR: This equation?

AUDIENCE: Or the one above that.

PROFESSOR: Yeah.

AUDIENCE: We use dU equals minus pdV? I mean, I agree with that, but couldn't we use a more

complete version? Like, the complete version of the first law of thermodynamics,

that dU equals TDS minus pdV.

PROFESSOR: OK, yeah. The question was when we wrote down dU equals minus pdV, why did

we not include a plus TDS term here, which could also be relevant. The answer is

that for the applications we're interested in-- you're quite right, it could be important,

but for the applications that we're interested in, which is the expanding gas in the

universe, the expanding gas in the universe will be making use of this fact.

It really does expand adiabatically, that is, there's nothing putting heat in or out, and

everything is remaining very close to thermal equilibrium, which means that entropy
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does not spontaneously change. So the TDS term we will be assuming is very, very

small, and that's accurate. And you're right, if that were not the case, there would be

further complications in terms of figuring out what row dot is.

Let me point out here that this equation actually does contain a somewhat startling

perhaps fact about gravity it says that in the context of general relativity. And that's

really the context that we're in, even though we haven't learned a lot of general

relativity. But it says that in the context of general relativity, pressures, as well as

mass densities, contribute to the gravitational field. A double dot is basically a

measure of how fast gravity is slowing down the universe.

And this says that there's a pressure. It can also help to slow down the universe.

Meaning that pressure itself can create a gravitational field. In the early universe,

where we go back to this radiation dominated period, we know that the pressure is

one third of the energy density. That says that this pressure term is the same size

exactly as the mass density term.

So in the radiation dominated phase, the pressure is just as important in effect for

slowing down the universe as is the mass density. In today's universe it's negligible.

Well, we'll come back that. The dark energy has a non-trivial pressure, but the

pressure of ordinary matter in today's universe is negligible.

The other important fact about this equation is that energy densities, so far as we

know, are always positive. We don't know for sure what the ultimate laws of physics

are, but for all the laws of physics that we know, energy densities are positive. On

the other hand, pressures actually can be negative for some kinds of material.

And we'll talk a little bit more about how to get a negative pressure later. But this

formula tells us that positive pressures act the same way as positive mass densities,

creating an attractive gravitational field which slows down the expansion of the

universe. But if there could be a material with a negative pressure, this same

equation, which would presumably still hold, and believe it does, would tell us that

that negative pressure would actually cause the universe to accelerate, because of

its gravitational effects.

11



Now, we're not talking about the mechanical effects of the pressure. Mechanical

effects of pressure only show up when there are pressure gradients, when the

pressure is uneven. So the very large air pressure in this room, which really is quite

large, we don't feel all, because it's acting equally in all directions. Uniform

pressures do not produce forces. So the mechanical effects of the pressure in the

early universe, which we're assuming is completely homogeneous, is zilch. There is

no mechanical effect.

But what we're seeing in this equation is a gravitational effect caused by the

pressure. And it's obviously gravitational, business the effect is proportional to

Newton's capital G, a constant determining the strength of gravity. So the equation

is telling us that a positive pressure creates a gravitational attraction, which would

cause the universe to slow down in its expansion.

But a negative pressure would produce a gravitational repulsion, which would cause

universe to speed up. And we now know that, today-- in fact, for the last five billion

years or so-- our universe itself is actually accelerating under the influence of

something. And the only explanation we have is that the something that's causing

the universe to accelerate is the repulsive gravity caused by some kind of a

negative pressure material.

And that negative pressure material is what we call the dark energy. And we'll talk a

little more later about what it is. It's very likely just vacuum energy. But we'll come

back to that later in the course. Yes?

AUDIENCE: When we looked at the toy example of the piston in the cavity, the pressure of the

gas was pushing outwards against the wall of the container. But we can't have that

view of the universe, really, because there's no exteriors in the universe.

PROFESSOR: There's no walls, right.

AUDIENCE: So how should we view pressure in the sense that--

PROFESSOR: OK. Yeah. OK, the question is, in our toy problem involving the piston, we had walls
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for the pressure to push against. And that was where the energy went. It went into

pushing the walls. When we're talking about the universe, there are no walls. How

does that analogy work? What plays the role of the walls?

And the answer, I think, is that the role of the walls, when we're talking about the

universe, first of all, you can ignore it if you just took in a small region. You could still

just say, the small region is pushing out on the regions around it. And I think that's

enough to make the logic clear.

But it still leaves open the question of, ultimately, where does this energy go? So

saying it goes from here to there doesn't help you unless you know where it goes

after it goes from and there and there. So you might want to ask the question more

generally, where does the energy ultimately end up?

And then I think the answer is that it ends up in gravitational potential energy. You

could certainly build a toy model, where you just have a gas in a finite region, self-

contained under gravity. And then you'd have to make up some kind of a

mechanism to cause it to expand.

But when you cause it to expand, you'll be pulling particles apart, which are

attracting each other gravitationally. And that means you'll be increasing the

gravitational potential energy as you pull the gas apart. So I think, ultimately, the

answer is the energy imbalance that we seem to be seeing here is taken up by the

gravitational field so that, all in all, energy still conserved. Any other questions?

OK, in that case, let us continue on the blackboard. OK, first thing I want to look at it

is just the behavior of a radiation-dominated flat universe. So a flat universe is going

to obey H squared equals 8 pi over 3 G rho, and then the potential minus kc

squared over a squared. Hard to write dotted lines on the blackboard. But this

potential term is not there, because k equals 0.

We're talking about the flat case. So for a flat case, we could just express H in terms

of rho. And we know how rho behaves for radiation. Rho falls off as 1/a to the

fourth. So H squared is proportional to 1/a to the fourth. That means that H itself is

13



proportional to 1/a squared.

So we can do that. a-dot over a is equal to some constant over a squared, a-dot

over a being H. And now we can multiply both sides by a, of course. And we get a-

dot is equal to a constant over a.

And this we can integrate. The way to integrate is to put all the a's on one side and

all of the dt's on the other side. So we get ada, writing this as da/dt. So ada is equal

to the constant times dt.

And then, as we've done before, when we're talking about matter, it's the same

calculation there. I just did different power of a appears so we'd know how to do it.

Integrating, we get 1/2a squared is equal to the constant times t, and then plus a

new constant of integration, constant prime.

Now we make the same argument as we've made in the past. We have not yet said

anything that determines how our clocks are going to be set. So we can choose to

set our clocks in the standard way, which is to set our clocks so that t equals 0

corresponds to the moment where a is equal to 0.

And if a is going to be equal to 0 when t is equal to 0, it means constant prime is

going to be equal to 0. So by choosing the value of constant prime, we really are

just determining how we're going to set our clocks, how we're going to choose the 0

of time. And we'll do that by setting constant prime equal to 0.

And then we get the famous formula for a radiation-dominated universe, a of t is just

proportional to the square root of t, or t to the 1/2 power. And this is for a radiation-

dominated flat universe, replacing the t to the 2/3 that we have for the matter-

dominated flat universe.

Once we know that a is proportional to the square root of t-- and for the flat

universe, the constant proportionality mean nothing, by the way. It's not that we

haven't been smart enough to figure out what it is. It really has no meaning

whatever. You could set it equal to whatever you want, and it just determines your

definition of the notch, your definition of how you're going to measure the comoving
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coordinate system.

Once we know this, we should know pretty much everything. So in particular, we

can calculate h, which a-dot over a. And the constant proportionality drops when we

compute a-dot over a. As we expect, it has no meaning. So it should not appear in

the equation for anything that does have physical meaning.

So H is just 1/2t, the 1/2 here coming from differentiating the t the 1/2 power. We

can also compute the horizon distance. So the physical horizon distance, l sub p

horizon, where p stands for physical, is equal to the scale factor times the

coordinate horizon distance. And the coordinate horizon distance is just the total

coordinate distance that light could travel from the beginning of the universe.

And we know the coordinate velocity of light is c divided by a. So we just integrate

that to get the total coordinate distance. So it's the integral from 0 to t of c over a of t

prime dt prime. And since a of t is just t to the 1/2, this is a trivial integral to do. And

the answer is 2 times c times t.

So in a radiation-dominated universe, the horizon's distance is twice c times t. For a

static universe, the horizon distance would just be c times t. It would just be the

distance light can travel in time t, but more complicated in an expanding universe.

For the matter-dominated case, we discovered that the horizon distance was 3ct, if

you remember. For the radiation-dominated case, it's 2ct.

And finally, an important equation is that, going back to here, where we started, this

equation relates H to rho. We found out that, merely by knowing the universe is

radiation-dominated, without even caring about what kind of radiation it is, how

much neutrinos, how much photons, whatever-- doesn't matter-- merely by knowing

the universe is radiation-dominated, we were able to tell that H is 1/2t. And if we

know what H is, that formula tells us we also know what rho is.

So without even knowing what kind of radiation is contributing, we know that, for a

radiation-dominated universe, rho is just equal to 3 over 32 pi Newton's constant G

times time, little t, squared. It's rather amazing that we can write down that formula
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without even knowing what kind of radiation is contributing. But as long as that

radiation falls off as 1 over the scale factor to the fourth, and as long as we know

the universe is flat, then we know what that energy density has to be. This is crucial

here, by the way. The energy could be anything if we did not assume that the

universe was flat.

OK, any questions about this? Yes?

AUDIENCE: If we assumed that it was almost flat, would we be able to have any bounds on it?

PROFESSOR: OK, question is, if we assumed that it was almost flat, would we be able to have any

bounds on it? The answer is, yeah, if you were quantitative about what you meant

by "almost flat," you could know how almost true that formula would have to be.

OK, if there are no other questions, I want to switch gears slightly now and go back

to talk about some of the basic underlying physics that we are going to need, and in

particular, the physics of black-body radiation. So this is really just a little chapter of

a stat mech course that we're inserting here, because we need it. And because it

comes from another course, we're not going try to do it in complete detail.

But I'll try to write down formulas that make sense. And that will give us what we

need to know to proceed. So that will be the goal.

So what is black-body radiation? The physical phenomenon is that, if one imagines

a box with a cavity in it-- that's supposed to be a box with a cavity in it, in case you

can't recognize the picture-- if the box is held at some uniform temperature t-- t is

temperature-- then is claimed and verified experimentally that the cavity will fill up

with radiation-- in this case, we're really just talking about electromagnetic radiation-

- the calving will fill up with electromagnetic radiation whose characteristics would be

determined solely by that temperature t and will therefore be totally independent of

the material that makes up the box.

Roughly speaking, I think the way to think about it is to say that the box will fill up

with radiation at temperature t. And saying that the radiation has temperature t is

enough to completely describe the radiation. It doesn't matter what kind of a box
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that radiation is sitting in. So the box will fill with radiation at temperature t. And that

radiation is called black-body radiation.

Like many things in physics, it has a variety of names, just to confuse us all. So it's

also called cavity radiation, which makes a lot of sense, given the description we just

gave. And it's also sometimes called just thermal equilibrium radiation. This is

radiation at temperature t.

I haven't really justified the word "black-body" radiation yet, so let me try to do that

quickly. The reason why it can be called black-body radiation-- and this will be

important for some things in cosmology; I'm not sure if it will be important to us or

not, but certainly important to know-- the reason why it's called black-body radiation

is because we imagine inserting into this cavity a black body, in the literal sense.

What is the literal sense of a black body? It's a body which is black in the sense that

all radiation that hits it is absorbed.

Now, this black body is still going to glow. If you heat a piece of iron or something to

very high temperatures, you see it glow. That glow is not reflection. That glow is

emission by the hot atoms in the piece of iron or whatever.

Emission is different from reflection. When we say it absorbs everything, we mean it

does not reflect anything. But it will still admit by thermal de-excitation.

The crucial distinction between reflection and thermal emission is that reflection is

instantaneous. When a light beam comes in, if it's reflected, it just goes back out

instantaneously. Emission, thermal emission, is a slower process. Atoms get

excited, and eventually, they de-excite and emit radiation. So it takes time. And

that's the distinction. We're going to assume that this body is black in the sense that

there's no reflection.

OK, now we're going to make use of the fact that we know that thermal equilibrium

works. That is, if you let any isolated system sit long enough, it will approach a

unique state of thermal equilibrium determined by its constituents, which you've put

in to begin with, but otherwise independent of how exactly you arrange those
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constituents. So if we put in, for example, a cold black body, it will start to get

harder, warming up to the same temperature as everything else. If we put in an

extra hot black body, it would emit energy and start to cool down to the temperature

of everything else. But eventually, this black body will be at the same temperature

as everything else.

And we're going to be assuming here that the box itself is being held at some fixed

temperature t. So wherever energy exchange occurs because of this black body, it

will be absorbed by whatever is holding the outer box at the fixed temperature. So in

the end, if we wait long enough, this black body is going to acquire the same

temperature as everything else and hold that temperature. Now, if it's holding that

temperature, it means that the energy input to the box, to the black body, will have

to be the same as the energy output of the black body.

Now, the black body is going to be absorbing radiation, because we have radiation

here, and we said that any radiation that hits it is absorbed. That was the definition

of "black." So it's clearly absorbing energy.

If it's not going to be heating up-- and we know that it's not, because it's in thermal

equilibrium; the temperature will remain fixed-- in order for it to not heat up, it has to

radiate energy, as well. And the energy it radiates has to be exactly the same as the

energy it's absorbing once it reaches thermal equilibrium. So in equilibrium, the

black body, BB, radiates at same rate that it absorbs energy.

This radiation process is this slow process of thermal emission. There are atoms

inside this black body that are excited. Those atoms will de-excite over time,

releasing photons that will go off.

And the important thing about that slow mechanism is that, if we imagine taking this

black body out of its cavity, but not waiting long enough for its temperature to

change-- so we'll assume its temperature is still the same, t. So this is a picture of

the same black body at temperature t, but now outside the cavity. Its radiation rate

is not going to change when we take it outside the cavity, because the radiation was

caused by things happening inside the black body, which are not changed when we
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put it in or out of the cavity.

So it will continue to radiate at exactly the same rate that it was radiating when it

was in the cavity. And that means it's going to radiate at exactly the same rate as

the energy that it would have absorbed if it were bathed by this black-body

radiation. So essentially, it means it will emit black-body radiation with exactly the

intensity that the black-body radiation would have on the outside if the black body

were still inside the cavity. So it radiates with exactly the same intensity as the

energy that it would receive if it were inside the cavity.

And furthermore, you could even elaborate a bit on his argument to show that the

radiation that it radiates has exactly the same spectrum, exactly the same

decomposition into wavelengths, as the black-body radiation inside the cavity. And

the way to see that is to imagine surrounding this black body by absorption filters

that only let through certain frequencies. And the point is that, no matter what

frequencies you limit going through this filter, you have to stay in equilibrium. It will

never get hotter or colder.

So that means that each frequency by itself has to balance, has to have exactly the

same emission as it would have abortion if the black body were just exposed to

black-body radiation surrounding it. So it radiates black-body radiation. And the

intensity and spectrum must match what we call black-body or cavity radiation. So

the cavity radiation has to exactly mimic the radiation emitted by this black body.

And that's the motivation for calling it black-body radiation.

Now, if this black body absorbed some radiation and reflected some, then it would

emit different radiation. So it is important that this body be black, in the sense that it

doesn't reflect anything. All radiation hitting it is absorbed. And only under that

assumption do we know exactly what it's going to emit. Yes?

AUDIENCE: So is this only true for right after you take it out?

PROFESSOR: Well, it will start to cool after you take it out. And as it cools, its temperature will

change. But if you account for the changing temperature, it will be true at anytime,
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actually. But the temperature will change.

AUDIENCE: Because, in the black cavity, it has things exciting it. And when you take it out,

there's no photons, no constant radiation to excite it. So it can radiate--

PROFESSOR: Yes. Once you take it out, it's no longer being excited. And I think, technically, you're

right. Once you take it out, it will not only cool, but it will cease to be at a uniform

temperature. And that's basically what we're saying if we're saying that the atoms

that are excited won't necessarily be in the right thermal distribution as they would

be if it was on the inside. That would be a statement that is not any longer in

thermal equilibrium.

But as long as the radiation is slow, you could just account for the changing

temperature. You would know how it radiates. And I think that's a very good

approximation. Although in principle, it will cease to be in thermal equilibrium, as

soon as you take it out, the edges will be cool, and the center will be hot. And you'd

have to take into account all of those things to be able to understand how it

radiates.

Any other questions?

OK, next, I want to talk a little bit about what this black-body radiation is. And one

can begin by trying to understand it purely classically, which, of course, is what

happened historically. In the 1800s, people tried to understand cavity radiation or

black-body radiation using classical physics, Maxwell's equations, to describe the

radiation.

And then, in a nutshell-- we're just trying to establish basic ideas here-- one can try

to treat a field statistical-mechanically by imagining not fields in empty space, but

fields in some kind of a box. In this case, it doesn't necessarily have to be the cavity

that we're talking about. It could be a big box that just enclosed the system

somehow to make it easier to talk about. And in the end, you could imagine taking

that box to infinity, this theoretical box that you use to simplify the problem.

But once you put the system in a box, then a field, like the electromagnetic field, can
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always be broken up into normal modes, standing wave patterns that have an

integer or a half integer number of wavelengths inside the box. And no matter how

complicated the field is inside the box, you could always describe it as a

superposition of some set of standing waves. In general, it takes an infinite number

of standing wave components to describe an arbitrary field-- that is, with shorter and

shorter wavelengths. But you can always-- and this is Fourier's theorem-- you can

always describe an arbitrary field in terms of the standing waves.

And that's good for the point of view of thinking about statistical mechanics, because

you could think about each standing wave almost as if it were a particle. It really is a

harmonic oscillator. So if you think you know the statistical mechanics of harmonic

oscillators, each standing wave in the box is just a harmonic oscillator, so simple.

We now try to ask what is the thermodynamics of this system of harmonic

oscillators. And the rule for harmonic oscillator is simple. Stat mech tells you that

you have 1/2 kT per degree of freedom in thermal equilibrium. The energy of a

system should just be 1/2 kT per degree of freedom.

Having said that, all the complicate questions come about by asking ourselves what

is meant by degree of freedom. But for the harmonic oscillator, that has a simple

answer. A harmonic oscillator has two degrees of freedom-- the kinetic energy and

the potential energy. So the energy of a harmonic oscillator should just be kT per

degree of freedom.

And we could apply that to our gas in the box and we could, ask how much energy

should the gas absorb at a given temperature? What should be the energy density

of the gas at a given temperature-- this gas of photons.

But it was noticed in the 1900-- the 1800s that this doesn't work because there's no

limit to how short the wavelengths can be. And therefore, there's not just some finite

set of harmonic oscillators. There's an infinite set of harmonic oscillators where you

have more and more harmonic oscillators at shorter and shorter wavelengths ad

infinitum, no limit. And that came to be known as Jean's Paradox.
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So what it suggests is that if this classical stat mech worked-- which obviously it's

not working. But if it did work, it would mean that as you tried to put a gas in just an

empty box in contact with something at a fixed temperature, the box would absorb

more and more energy without limit. And ultimately, it would presumably cause the

temperature of the whatever is trying to maintain the temperature to go to 0 as

energy gets siphoned off to shorter and shorter wavelengths of excitations.

That obviously isn't the way the world behaves. We'd all freeze to death if it did. So

something has to happen to save it. And it wasn't at all obvious for many years what

it was that saves it. But this Jean's Paradox turns out to be saved by quantum

mechanics.

And the important implication of quantum mechanics is that the energy of a

harmonic oscillator is no longer allowed to have any possible value, but is now

quantized as some integer times h times nu, the frequency-- h being Planck's

constant, nu being frequency, n being some integer where this integer might be

called the excitation level of the harmonic oscillator.

Depending how you choose your 0, you might have an n plus 1/2 there. But that's

not important for us right now. It will be important later actually. But for now, we'll

just allow ourselves to readjust the 0 and just think of it as n times h nu, or h bar

omega.

Now, this makes all the difference, statistical mechanically. One can apply statistical

mechanics using basically the same principles to the quantum mechanical system.

And the key thing now is that for the very short wavelengths, which are the ones

that were giving us trouble-- the infinities came to short wavelengths. For the short

wavelengths where nu is high, h nu is high.

And it means that there's a minimum ante that you could put in to excite those short

wavelength harmonic oscillators. And it's a large number. You either put in a large

amount of energy or none at all. Quantum mechanics doesn't let you do anything in

between.
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Now remember, the classical mechanics answer was that you have kT in each

harmonic oscillator. And kT would be small compared to h nu, if we're talking about

a very short wavelength. So the classic answer is just not allowed by quantum

mechanics. You either have to put in nothing or an amount much, much larger than

the classical answer.

And when you do the statistical mechanics quantum mechanically, which is not a big

deal really, you find that when you're confronted with that choice, the most likely

answer is to put in no energy at all. So quantum mechanics freezes out these short

wavelength modes. And then the n produces a finite energy density for a gas of

photons. Yes?

AUDIENCE: Seems like if you were to sum over like all the possible wave numbers, that-- well,

so the energy is inversely related to wavelength, right? So even if you quantize it,

like for large wavelengths, isn't the sum still like a sum of one over lambda

wavelength, with its derivative?

PROFESSOR: You're saying, isn't there also a divergence at the large wavelength n?

AUDIENCE: Because that sum doesn't seem like it would work.

PROFESSOR: Right. No, that's important. The reason that's not a problem is that if you're talking

about the energy in a box, the wavelength can't be bigger than the box. The largest

possible wavelength is twice the box so that half a wavelength fits in the box. If

you're talking about the energy in the whole infinite universe, then we expect the

answer to infinite. And it is. There's no problem with having infinite total energy if

you want to have a finite energy density throughout an infinite universe.

So the size of the box cuts off the large wavelengths. And quantum mechanics cuts

off the small wavelengths. So in the end, one does get a finite answer for the energy

density of black-body radiation. And that's crucial for our survival, crucial for the

existence of the universe as we know it, and also crucial for the calculations that

we're about to do.

OK, so when one does these calculations initially for photons only, what we'd find is
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that the energy density is equal to a fudge factor, which I'm going to call g. And

you'll see later why I'm introducing a fudge factor. For now, g is just 2. But later,

we'll generalize the application of this formula, and g will have different values. But

for now, we're dealing with photons. There's a factor of 2 there, but I'm going to

write 2 as g, writing g equals 2 underneath.

And then the pi squared over 30-- you can really calculate this-- times kT to the

fourth power divided by h bar c cubed, h bar being Plank's constant divided by 2 pi

and little k being Boltzmann constant. So this is calculated just by thinking of the gas

in a box as a lot of harmonic oscillators and applying standard stat mech to each

harmonic oscillator, but you apply the quantum mechanical version of the stat mech

to each harmonic oscillator.

And you can also find, by doing the same kind of analysis, that the pressure is 1/3

the energy density, which we also derived earlier by different means. And it's all

consistent so you get the same answer every time, even if you think about it

differently. So here, I have mine deriving it directly from the stat mech.

You can also, from the stat mech, calculate the number density of photons in

thermal equilibrium. And that will be equal to -- again, there's a factor of 2. But this

time, I'll call the factor of 2 g star, where g star also equals 2 for photons. But when

we generalize these formulas, g will not necessarily equal g star, which is why I'm

giving it two names.

And this g star multiplies zeta of 3, where zeta refers to the Riemann zeta function,

which I'll define in a second, divided by pi squared times kT cubed divided by h bar

c cubed. OK. OK, so I need to define this zeta of 3. It's 1 over 1 cubed plus 1 over 2

cubed plus 1 over 3 cubed plus dot dot dot. It's an infinite series. And if you sum up

that infinite series, at least to three decimal places, it's 1.202.

OK, then there's one other formula that will be of interest to us. And that'll be a

formula for the entropy density. Now, if you've had a stat mech course, you have

some idea of what entropy density means. If you have not, suffice it to say for this

class that it is some measure of the disorder in the sense of the total number of
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different quantum states that contribute to a given macroscopic description. The

more different microstates there are that contribute to a macroscopic description,

the higher the entropy.

And the other important thing about entropy to us besides that vague definition--

which will be enough-- but the important thing for us is that under most

circumstances, entropy will be conserved. It's conserved as long as things stay at or

near thermal equilibrium. And in the early universe as the universe expands, that's

the case. So for us, the entropy of our gas will simply be a conserved quantity that

we can make use of. And we will make use of it in some important ways.

And we could write down a formula for the entropy density of photons. And it's g,

where this g in fact the same g as over there. It is related to the energy. So it's the

same g that appears in two cases, 2 in both cases for protons by themselves. And

then there are factors that you can calculate-- 2 pi squared over 45 times k to the

fourth T cubed over h bar c cubed.

OK, this time, the number of k's and T's do not match. That's mainly due to the

conventions about how entropy is defined. It's not really anything deep.

I might mention at this point that the 2's that I've been writing for everything-- g

equals 2, g star equals 2-- the reason those 2's are written explicitly rather than just

absorbing the factor of 2 into the other factors is that photons are characterized by

the fact that there are two polarizations of photons. So if I have a beam of photons,

they could be right-handed or left-handed. And anything else could be considered a

superposition of those two.

So there are two independent polarizations. And it's useful to keep track of these

formulas as the amount of energy density per polarization. Thus, different kinds of

particles will have different numbers of polarizations. So if we know the amount per

polarization, we'll be able to more easily apply it to other particles. Yes?

AUDIENCE: Sorry, just to kind of bring up the same question, if we-- I read that in the early

universe, the temperature is constantly changing or it's cooling.
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PROFESSOR: Right.

AUDIENCE: So then if the temperature is changing, then how can we say that the entropy is

constant?

PROFESSOR: OK, important question-- we'll be getting to it very soon. But since you asked the

question, I'll ask it now. The question was if the universe is expanding, and the

entropy density is going down because it thins, how can that happen-- I guess it was

asked the other way around. If the temperature is falling, how can entropy be

conserved if this is the formula for entropy density? And the answer-- when I tell

you, you'll see it's obvious.

We don't expect the entropy density to be conserved if the entropy is conserved.

The entropy thins out as the universe expands. So if we just had a gas with nothing

else changing, we expect the entropy density to go down like 1 over the scale factor

cubed, just like the number density of particles.

So if s is going to go down like 1 over the scale factor cubed, that would be

consistent with this formula if the temperature also fell as 1 over the scale factor. So

that to cubing it made things match. And that's what we'll find. The temperature falls

off, like 1 over the scale factor. And that's consistent with everything that we said

about energy densities and so on.

OK. Next thing I want to talk about is neutrinos, which I told you earlier contributes in

a significant way to the radiation energy density in the universe today. Neutrinos are

particles which for a long time, were thought to be massless. Until around 2000 or

so, neutrinos were thought to be massless.

Now we know that in fact, they have a very small mass, which complicates the

description here. It turns out that cosmologically, neutrinos still act as if they were

massless for almost all purposes and for really all purposes that we'll be dealing

with in this class, although if we were interested in the effects of neutrinos on

structure formation, we'd be interested in whether or not the neutrinos have a small

mass or whether it's smaller than that. We know it's non-zero.
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We don't know what the neutrino mass is, by the way. What we actually know from

observations is that there are three types of neutrinos. And those are called flavors.

And I'll use the letter nu for the word neutrino. And those three types of neutrinos

are called nu sub e, called the electron neutrino; nu subbed mu, called the muon

neutrino, and nu sub tau, called the tau neutrino.

And these letters e, mu, and tau link to the names of particles. This is the electron

neutrino. This is the muon neutrino connected to a particle called the muon, which is

like the electron but heavier and different. And this is linked to a particle called the

tau, which is also like the electron but much more heavier but otherwise similar in its

properties.

And the neutrinos are linked in the sense that when a neutrino is produced,

depending on how you start, it is very typically produced in conjunction with one of

these other particles. So an electron neutrino is typically produced in conjunction

with an electron. And similarly, a muon neutrino is typically produced in conjunction

with a muon. And a tau neutrino is typically produced in conjunction with a tau.

Now, what does this have to do with neutrino masses? We've never actually

measured the mass of neutrino. So we only know that they have mass indirectly.

What we have seen is one flavor of neutrino turn into another flavor. And it turns

out, in the context of quantum field theory and I think this does make a certain

amount of sense just by intuition, if a particle is massless, it can never change into

anything. The process by which one changes into another is pretty quantum

mechanical and a little hard to understand anyway.

But if the particles were really massless, they would move at the speed of light. And

if the particles were moving at the speed of light, if the particle had any kind of a

clock on the particle, that clock would literally stop with the particle moving at the

speed of light. So if particles are massless, any internal workings that that particle

might have to be frozen. That is, if it's a clock, it has to be a clock that's stopped

completely.
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And for reasons that are essentially that, although they can be made more formal

and more rigorous, a truly massless particle could never undergo any kind of

change whatever. It would have to stay exactly like it looks like to start with.

Because it just has no time.

So the fact that these neutrinos turn into each other implies that they must have a

nonzero mass. It must not really be moving at quite the speed of light. And that's the

way the formalism works. And we could set limits on the masses based on what we

know about the transitions between one kind of neutrino and another. Yes?

AUDIENCE: How do we explain photon decaying to an electron-positron pair then?

PROFESSOR: A photon decaying to an electron-positron pair?

AUDIENCE: Yeah.

PROFESSOR: The answer is a free photon never does decay to an electron-positron pair. Photons

can collide with something and produce an electron-positron pair. But that collision,

that's a more complicated process.

What I'm saying is-- I'm sorry. This process of conversion-- maybe I should have

clarified-- happens just as the neutrinos travel. It's not due to collisions. Due to

collsions, complicated things can happen whether the particle is massless or not.

But a massless particle simply in transit cannot undergo any kind of transition. And

these neutrinos are seen to undergo transitions simply being in transit without any

collisions. In terms of my clock analogy and a stopped clock, I think the reason the

photon can convert into electron-positron pairs if it collides with something is that

when it collides, it essentially breaks the clock. You don't have a photon that's just

moving along without time anymore.

OK, so these neutrinos have masses. And maybe I should, at this point, write down

some bounds on these masses. m squared 21 times c to the fourth is equal to 7.50

plus or minus 0.2 times 10 to the minus 5 electron volts squared. These numbers

come from the latest particle data tables, which I gave references for in the notes.
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So this is the difference of the mass squared. And delta m 23 squared times c to the

fourth to turn it into the square of an energy is 2.32 plus 0.12 minus 0.08 times 10 to

the minus third electron volts squared. So one thing you notice immediately is that

these are incredibly small masses. Remember, the proton weighs 938 MeV, three

million electron volts. And these are fractions of one electron volt.

So by the standards of particle physics, these are unbelievably small energies,

unbelievably small mass differences. But they're there. They have to be there for

the physics we know to make sense.

The other thing that you may notice about this notation-- which I don't want to

elaborate on but I'll just mention-- this is called 21. This is called 23. There's no 1, 2,

or 3 there. There's an e and a mu and a tau. The complication here is something

very quantum mechanical. The e, mu and tau labels are labels which basically label

the neutrino according to how the neutrino is created.

It turns out that their mass eigenstates-- states which actually have a definite mass--

are not the e, the mu or the tau. In fact, if the e had a definite mass, that would be

saying that an e would just propagate as a particle with a certain mass. It would not

convert into anything else. The fact that an e converts into other particles-- a nu sub

e converts into other particles is really the statement that nu sub e is not a state with

a definite mass.

But there are states with definite masses which could be expressed quantum

mechanically as superpositions of these flavor eigenstates. So nu sub 1, nu sub 2

and nu sub 3 are states of neutrinos that have definite masses. And each one of

them is a superposition of nu sub e, nu sub mu and nu sub tau. Yes?

AUDIENCE: How come we don't have a delta n from 31?

PROFESSOR: Good question. I think it's just the lack of knowledge. I don't think there's any reason

it's not defined. I'm sure it is defined. I think it's just lack of knowledge. And if I knew

more details about how these things were measured, I could give you a better story

about that. But I don't, frankly.
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So in the end, it's a rather complicated quantum mechanical system which we're not

going to go into any details about. What more should I say today?

OK, let me just mention for today and we'll continue next time after the quiz, for our

purposes, we're going to treat these neutrinos as if they're massless. And it turns

out that that's actually extraordinarily accurate from the point of view of cosmology,

at least for the kind of cosmology that we're doing where we're just interested in the

effect of these neutrinos on the expansion rate of the universe.

And treating them as massless particles, I will shortly give you the formulas for how

they contribute to the black-body radiation. But it I think there's no point in my

writing them now. I'll just write them again in the beginning of next period.

But they do contribute to the black-body radiation and in a way that we actually

know how to calculate. And they have a noticeable effect on the evolution of our

universe. OK, that's all for today. Good luck on the quiz on Thursday. I'll be here to

help proctor. I think Tim [INAUDIBLE] will be here too. And I'll see you more

intimately either at my office hour tomorrow or at lecture a week from now.
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