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PROFESSOR: OK if there are no questions, we will get back to physics. What I want to do today,

as it suggests on the slide, is to finish the kinematics of homogeneous expansion

that we were talking about last time. And the one topic in that category that we have

not discussed yet is the cosmological redshift So we'll begin by going over that. And

then we'll begin to go on to the next topic altogether, which is the dynamics of

homogeneous expansion -- how do we understand how gravity affects the

expansion of the universe? So that will be the main subject of today's lecture, once

we've finished up the issue of the cosmological redshift shift.

Let me remind you that at end of the last lecture, we were talking about the

synchronization of clocks, and the coordinate system that we'll be using to describe

the homogeneously expanding model of the universe. Remember, we are

introducing spatial coordinates that grow with the universe, so that we're going to be

assuming the fact, literally, that the universe is perfectly homogeneous and

isotropic, which means that all objects will be literally addressed, relative to this

coordinate system. If we're talking about the real universe, then there would be

some motion relative to this coordinate system, because the universe is not exactly

homogeneous. But we're going to be working for now with the approximation that

our model universe is exactly homogeneous, which means that all matter is

completely at rest, relative to this expanding coordinate system.

And now we want to talk about how to define time, or to review what we said last

time when we talked about how to define time. What we will imagine is that in every

location in the universe at rest, relative to the matter, is a clock. And each clock ticks

off time, and all those clocks will be acceptable as a clock which measures the time

at relevant positions-- time is measured locally-- but we still have to talk about

synchronizing those clocks.
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And what we said last time is that we can synchronize the clocks as long as there's

some cosmic phenomena that can be seen everywhere, which has some time

evolution. And we gave two examples-- one is the evolution of the Hubble

expansion rate, which can be measured locally, and everybody can agree to set

their clocks to midnight when the Hubble expansion rate has a certain value. And

another cosmic variable is the temperature of the cosmic microwave background

radiation.

So, everybody in this model universe will agree that we'll set the clocks to midnight

when the temperature of the cosmic background radiation goes to 5 degrees, or

any specified number. So as long as there's a phenomena of that sort, which there

is in our universe, it's possible to synchronize these clocks in a unique way. And the

important thing to realize is that once they're synchronized at one time, they will

remain synchronized as a consequence of our assumption of homogeneity. That is,

if everybody agrees that the cosmic background radiation has a temperature of 10

degrees at midnight, if everybody waits for 15 minutes after midnight, everybody

should see the same fall in temperature during that time interval, otherwise it would

be a violation of this hypothesis of perfect homogeneity. Yes, question.

AUDIENCE: Is it verified that temperature is invariant for all observers-- all Lorentz observers?

PROFESSOR: OK the question is, is temperature invariant for all observers? And the question

even included all Lorentz observers. It's not really invariant to different Lorentz

observers. We're talking about a privileged class of observers, all of whom are at

rest, relative to the average matter. If you move through the cosmic background

radiation, then you don't see uniform thermal distribution any more. Rather what

you see is radiation that's hotter in the forward direction and colder in the backward

direction. And we in fact, as I think I have mentioned here, see that effect in our real

universe. We're apparently moving relative to the cosmic background radiation, at

about 1/1000th of the speed of light. So it's not invariant with respect to motion.

There's the additional question, though is, is it the same everywhere in the visible

universe? As far as we can tell, it is. There is some direct measurement of that, that
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universe? As far as we can tell, it is. There is some direct measurement of that, that

we'll probably talk about later in the course, by looking at certain spectral lines in

distant galaxies. One can effectively measure the temperature of the cosmic

microwave background radiation in some distant galaxies. This line cannot be seen

in all galaxies, and the extent that it's been measured in degrees. So certainly in our

model, we're going to assume complete homogeneity, so everything's the same

everywhere, and there is strong evidence for that homogeneity. Although it's not

exact, but there's strong evidence for approximate homogeneity in the real

universe. Yes?

AUDIENCE: If you were really close to the black hole [INAUDIBLE].

PROFESSOR: OK. The question is, suppose we're a little bit more careful, and talk about the fact

that some people might be living near black holes, and other people are not. Will

that affect the synchronization of clocks for the people who are living near black

holes? The answer is sure, it will. We can only synchronize clocks cosmically if we

assume that the universe is absolutely homogeneous. As soon as you introduce

inhomogeneities like black holes, or even just stars like the sun, they create small

perturbations, which then make it really impossible to expect clocks to stay in sync

with each other. So as soon as you have concentrations of mass, then the fact that

what we're talking about now is an approximation becomes real. But those

deviations are small. The deviations coming from the sun are only on the order of a

part in a million or so. So, to a very good approximation, the universe obeys what

we're describing, although if you went very close to the surface of one of these

super-massive black holes in the centers of galaxies, or something, you would in

fact find they had a very significant effect on your clocks. Any other questions?

OK. Let me move on now. The next topic, as I have warned you, is the cosmological

redshift. Now in the first lecture beyond the overview, which I guess was a

combination of the second and third lectures in the course, we talked about the

Doppler shift for sound waves, and we talked about the relativistic Doppler shift for

light waves-- that was all in the context of special relativity. Now what we're going to

face is the fact that cosmology is not really governed entirely by special relativity,
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although special relativity still holds locally in our cosmology. But special relativity

does not include the effects of gravity, and on a global scale, the effects of gravity

are very important for cosmology, and therefore special relativity by itself is not

enough to understand many properties of the universe, including the cosmological

redshift. It turns out though, that there's a way of describing the cosmological

redshift which will make it sound even simpler than special relativity. And I'll describe

that first, and then afterwards, we'll talk a little bit about how this very simple-looking

derivation jives with the special relativity derivation, which must also be correct, at

least locally.

OK. So, the question we want to ask ourselves, is suppose we look at a distant

galaxy, and light is emitted from that galaxy. How will the frequency of that light shift

between the frequency it had when it was emitted, and the frequency that we would

measure as we received the light. So to draw the situation on the blackboard, let's

introduce a coordinate system, x. And this will be our comoving coordinate system.

X is measured in notches. We'll put ourselves at the origin-- there is us. And we'll

put our galaxy out here someplace-- there is the distant galaxy that we will be

observing. They galaxy will be at some particular coordinate, which I will call l sub c,

c for coordinate distance, so l sub c is the coordinate distance to the galaxy. And

then the physical distance-- is what we've been calling l sub p, p for physical, which

depends on time, because there's Hubble expansion. So l sub p of t, as we've said

a number of times already, is a of t times l sub c. The scale factor, which depends

on time, times the coordinate distance, which does not depend on time. So

everything just expands with the scale factor a of t.

So this describes the situation, and now what we want to ask ourselves, is suppose

a wave is being emitted by the galaxy-- and we'll be trying to track the distance

between wave crests, which determines what the wavelength is. Since we'll only be

interested in wave crests, we will talk in language where we just imagine there's a

pulse at each crest, and what happens in between doesn't matter for what we're

talking about. So we want to track successive pulses emitted by the galaxy.

Now the important feature of our system is that we have argued that we know how
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to track light waves through this kind of coordinate system. If x is our cosmic

coordinate, dx dt, the coordinate velocity of light, is just equal to the ordinary velocity

of light, c, but rescaled by the scale factor. And the scale factor here is playing the

role of converting meters to notches. So c is measured in meters per second. By

dividing by a of t, we get the speed in notches per second, which is what we want,

because x is measured, not in meters, but in notches. A notch being the arbitrary

coordinate-- the arbitrary unit that we adopt to describe our comoving coordinate

system.

Now the important feature of this equation, for our current purpose, is that the

speed of light, as we're going to follow these light pulses through our coordinate

system, depends on time, but it does not depend on x. Our universe is

homogeneous, so all points x are the same. So two pulses will travel at the same

speed at the same time, no matter where they are. And that's all we really need, to

understand the fact that if one pulse leaves our galaxy and is coming towards us-- I

should do that with my right hand, because the second pulse is going to be my

other hand-- as that second pulse follows it, the second pulse, at any given time--

even though the speed will change with time, but at any given time-- the second

pulse will be traveling at the same speed as the first pulse.

And that means that it'll look something like this. The speed might change with time,

but as long as they both travel at exactly the same speed at any given time, they will

stay exactly the same distance apart in our comoving coordinate system. Delta x,

the x distance between the two pulses, will not change with time. And if the

coordinate distance does not change with time-- the physical distance is always the

scale factor times the coordinate distance-- it means that the physical wavelength of

the light pulse will simply be stretched with the scale factor, which means you'll be

stretched with the expansion of the universe, in exactly the same way as any other

distance in this model universe will be stretched as the universe expands. So that's

the key idea, and it's very simple, and those words really say it all.

Delta x equals constant implies delta l physical is proportional to a of t, and that

implies that the wavelength of the light, as a function of t, is proportional to a of t.
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Wavelength is actually what I was calling delta l physical, the distance between

these two pulses, where each pulse represents a crest of the wave. And lambda is

the standard letter of the wavelength.

Now the wavelength is related to the period of a wave simply by the relationship that

lambda is equal to c times delta t. Wavelength is just the distance the wave travels

in one period. So if lambda is proportional to a of t, so is the time interval, delta t,

the period of the wave, going to be proportional to delta t. So we have been defining

the redshift in terms of the period. So delta t observed over delta t at the source is

equal to lambda observed over lambda at the source. Lambda and delta t are

proportional to each other. And-- let me finish and I'll get to you, OK?

AUDIENCE: Yes.

PROFESSOR: This then, the ratio of the lengths, is just the amount by which universe has

stretched over that time. So just the ratio of the scale factors at the two times. So

this is equal to just a of the time of observation, which I'll call t sub o, over a of the

time of the source, t sub s. So this is the scale factor at source, and the numerator

here is the scale factor at observation. And this ratio of times, or ratio of

wavelengths, or ratio of scale factors, is defined to be 1 plus z, as we have always

done. The ratio of the time intervals we had defined originally as 1 plus z, we'll keep

that definition, and that defines the redshift shift, z. Question now? Yes.

AUDIENCE: Is that definition of lambda, does that have anything to do with the Lorentz

invariant? Like, it just kind of struck me as the first term?

PROFESSOR: Not sure what you mean? What-- Lorentz invariant what?

AUDIENCE: Like the c delta tau squared equals c delta t--

PROFESSOR: Oh. Well, the delta t could be put into that formula, but that's formula could measure

any delta t.

AUDIENCE: Yeah

PROFESSOR: So of course Lorentz is a special case, but any delta t would be a special case of
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that formula, so I don't think there's a lot to say about it being a special case.

AUDIENCE: All right, cool.

PROFESSOR: Any other questions? Yes?

AUDIENCE: Is this like fundamentally different? Or is it similar [INAUDIBLE]?

PROFESSOR: [INAUDIBLE] I was going to come to that. That's the question of how the

cosmological redshift relates to the special relativity redshift that we derived earlier,

and I'm coming to that immediately. Good question, we're getting there. Any other

questions, though, before I go there? In my point of view, that's the next topic. OK.

OK, so let me move on to exactly that question. How does this relate to what we

already said about the redshift? This answer-- I would like to quantify things and say

that it differs in two ways from the calculation that we've done previously. And the

first is-- the reason why it's important to us-- is that this actually takes into account,

effects which were not taken into account by our earlier calculation. In particular,

even though we derived this by a very simple kinematic argument, which didn't

seem to involve much math at all, it actually is incredibly strong, in that it

encompasses not only special relativity, but also general relativity. It includes all the

effects of gravity. If you think about what gravity might do to what we're talking

about, gravity doesn't change the fact that the speed of light is going to be c over a

of t. That really is just a unit conversion, combined with the fundamental physics

assumption that the speed of light is always measured at c, relative to any observer.

So when we put in gravity, this relationship continues to hold-- that was really all we

used to drive this-- so gravity is not going to affect the answer. If you think about

special relativity, is there something left out? Everything I said here, Newton would

have understood perfectly. I didn't have to mention time dilation, which was crucial

to our special relativity calculation of the redshift shift.

Did I make a mistake? Is there some place where time dilation should come in

here? The answer, really, is no, if you think about it. We had two clocks involved in
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our system, a clock on the galaxy, and a clock at us, which we used to measure the

period of emission, and the period of reception, but those clocks are each at rest,

relative to matter in the region-- even though they're moving with respect to each

other-- so by definition, they do measure cosmic time. Cosmic time is a very

peculiar kind of time, it's not the time in any inertial frame. These clocks are moving

with respect to each other, so if you were defining inertial frame time, their clocks

could never be synchronized and would never agree with each other.

But in this concept of cosmic time, they do agree with each other, by construction.

And since each clock is at rest, relative to its local matter, it measures this t that

we're talking about, this cosmic time variable. And when the pulse arrives at us,

when we measure delta t on our clock, that's exactly the quantity that, in the end,

we want to talk about-- delta t sub observer. The quantity measured on our clock,

which is a clock which also measures cosmic time. So there's no place for any time

dilation to enter. It's not that we forgot it, it's not there. It's not part of this calculation.

So this result, as simple as it looks, actually fully encompasses the effects of both

special relativity and gravity. Now let me just mention, it's not obvious how gravity

came in here. I'm telling you it satisfies-- includes all the effects of gravity. Where is

gravity hidden? Let me throw that out as a question. How does gravity affect this

calculation, even though I didn't have to mention gravity when I described the

calculation? Yeah, in back.

AUDIENCE: The scale factor?

PROFESSOR: That's right, the scale factor. We have not yet talked about how a of t evolves. And

the evolution of the a of t will explicitly involve the effects of gravity. And that's why

this result depends on gravity, even though we didn't need to use gravity, or say

anything about gravity to get the results. So this is the first difference. This

calculation includes the effect of gravity. Which is through a of t. Now, because this

calculation seems to include everything that the first calculation included and more,

you'd expect to be more complicated, but it's less complicated. Could we have

saved ourselves a lot of time last week by just giving this calculation, and deriving
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the other answer from it. The answer is, not easily, it would not have saved time,

one can't, in principle, do it that way.

But the other important difference between these two calculations is the variables

that you're using to express your answer. Once you ask a question, if you ask the

question vaguely, there could be many different answers to that question,

depending on what variables are used to express the answer. So what we're doing

here is we're expressing the redshift z for objects which are in fact at rest in the

comoving coordinate system. The special relativity calculation-- I think I'm going to

need another blackboard. The special relativity calculation, on the other hand gives

z as a function of the velocity, as measured in an inertial coordinate system. So the

answers are just being expressed in terms of totally different things, and the answer

is so simple here because a of t already incorporates a lot of information, and we've

just taken advantage of that to be able to give a very simple answer in terms of a of

t, without yet saying how we're going to calculate a of t. Yes.

AUDIENCE: [INAUDIBLE] two questions. One is about that constant time.

PROFESSOR: Yes.

AUDIENCE: How is that different than the Newton or Galilean idea of absolute time?

PROFESSOR: OK. The question was how does the notion of cosmic time differ from Newton's or

Galileo's notion of absolute time? And the answer is perhaps not much.

Operationally, I think it is pretty much the same, but the real point is that Newton

and Galileo did not know anything about relative effects like time dilation. So for

them, it was just obvious that all clocks ran at the same speed, and time was

naturally universal-- naturally absolute. In this case, we're aware of the fact that

moving clocks run at different speeds. So if we were to take these clocks between

us and the galaxy, and transport one to the other, depending on what path we used

to transport them on, in the end, they would probably not agree with each other. So,

we're setting up a definition of what we're going to define locally as time,

recognizing that what time means here, versus what time means there, is a

consequence of our assumptions about how we define things. It is not given
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automatically by the fact that all clocks will run at the same speed. Follow up?

AUDIENCE: Yeah. An addition, this is slightly different. So, in the special relativity calculations,

[INAUDIBLE] z could be [INAUDIBLE]

PROFESSOR: Absolutely.

AUDIENCE: So here we're only seeing a red shift, but we would obtain a blue shift if we allowed

a of t to be decreasing, right?

PROFESSOR: That's right. If the universe contracted, we would get a blue shift.

AUDIENCE: [INAUDIBLE]

PROFESSOR: That's right. It would correspond to the special relativity case. I was going to say a

few words about the correspondence, but I'll answer questions first. Yes.

AUDIENCE: I'd kind of like to add on to that question regarding the causal time.

PROFESSOR: Yes.

AUDIENCE: Isn't the fact that you've scaled the speed of light, that's what takes care of this

discrepancy between the clocks themselves?

PROFESSOR: The question is, does the fact that we've rescaled the speed of light take care of the

discrepancy of times? Well, partially, but it doesn't say anything about what moving

clocks will do. If you had a clock moving through this universe, you would have to

calculate a time dilation for that clock, just as in any other case.

AUDIENCE: What about the two end points, say, of the path. Is that why you're scaling the

speed of light?

PROFESSOR: Not really. The scaling of the speed of light really comes about through the scaling

of space. This in fact is just the scale factor that we scale space. Time is measured

locally on every clock, and we don't think of it as being rescaled. The speed of light

looks different, simply because a notch is changing with time. And that formula tells

you how to convert meters per second, which will always be the same to the speed

10



of light, to notches per second, which will change as the size of a notch changes

AUDIENCE: Right,yeah. OK. I understand.

PROFESSOR: Yes.

AUDIENCE: Further in the line of questioning about cosmological time-- so we expect that us

and that other galaxy have simultaneous clocks relative to the cosmic time, and also

we expect our own clocks to be simultaneous with our cosmological clocks, I

assume. So if we-- Is that true?

PROFESSOR: That's right, yes. Our own clock is just an example of one of the clocks sitting on the

place called us, and all clocks sitting on that place will behave the same way. And

they define the local definition of cosmic time.

AUDIENCE: So if we take those clocks and move very slowly across to the other galaxy, in

cosmological-- in comoving coordinates, we wouldn't expect there to be any time

dilation, in the respect that clocks stay simultaneous. Safe to say, that we would

think it would be simultaneous with us the whole time, until we got to the other

galaxy. And then it would still be simultaneous. But, they're moving at a speed

relative to us, so we wouldn't expect [INAUDIBLE].

PROFESSOR: Right. OK. You raise a good question, which I would have to think about the answer.

If we brought-- if we carried our clock very slowly to this galaxy, and the limit was

infinitely slow, would it agree when it got there? Let me think about that, and answer

it next time. I'm not altogether sure. Any other questions? OK. I want to say

something about the relationship between these two calculations.

What would happen if we tried to actually compare the answers that we got for the

relativistic Doppler shift, and for this answer, for the cosmological redshift. There's

really only one case where it would be legitimate to compare them. Since the

calculation we just did was supposed to include the effects of gravity, and special

relativity calculation does not include the effects of gravity, the only way we should

be able to compare them, and see that they agree, would be the case where gravity

is negligible.
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And one can talk about a cosmological model where gravity is negligible, there's

nothing inconsistent about that. If gravity were negligible, what would we expect for

the behavior of a of t for this [INAUDIBLE] question. I hear a constant. Constant is

certainly a possibility, but it's not the only possibility, so try to think a little harder,

and ask if there are other possibilities. Yes.

AUDIENCE: I'm sorry, could you rephrase the question?

PROFESSOR: Rephrase the question. The question is, if gravity were negligible, what would we

expect for the behavior of the scale factor a of t? And so far, it's been suggested

that it could be a constant, and that's true, but that's not the most general answer.

Yes.

AUDIENCE: It could be negative.

PROFESSOR: Could be negative? I don't know what would mean, actually.

AUDIENCE: What do you--

PROFESSOR: It would mean the universe was inside out.

AUDIENCE: Oh.

PROFESSOR: It would really Just mean that you've reversed your coordinates. I don't think it

would have any significance.

AUDIENCE: Oh, the expansion would actually be a contraction?

PROFESSOR: Oh, well it could decrease with time, that's not the same as being negative.

AUDIENCE: Oh, I'm sorry

PROFESSOR: It could always increase or decrease with time, whether gravity is present or not.

For our universe it's increasing with time, but one could imagine a contracting

universe. Yes, Aviv.
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AUDIENCE: Linear?

PROFESSOR: Linear. That's right. If there's no gravity, a of t should be a constant times t. The

constant could be zero, and then a of t is-- and maybe I should say it should be a

constant plus a constant times t, and then in a special case it could just be a

constant. But it should vary linearly with time. And that simply means that all

velocities are constant. If all velocities are constant, then a of t is varied linearly with

time, so that the distance -- the famous relationship is the distance of a of t times l

sub c. If this distance were growing linearly with time, it could just be a constant

velocity, which is certainly allowed in the absence of gravity. It would mean that a of

t was growing linearly in time. So that would be the special case of absence of

gravity, a of t growing linearly in time. And one can always set the constant that

would be added to the linear to be zero, just by choosing zero of time to be the time

at which a of t is zero. So, in the absence of gravity, one can say that a of t should

just be proportional to t.

So for that special case, these two calculations should really agree. And it will be,

I'm pretty sure, an extra-credit homework problem coming up soon, in which you'll

get a chance to calculate that. It's not easy, which is why it will be an extra-credit

problem, probably, not required problem, because it involves understanding the

relationship between these two coordinate systems. The special relativity answer is

given in inertial coordinate system which, when gravity is present, doesn't exist at

all. In the presence of gravity, there is no global inertial coordinate system. But

without its action, there is. But it's related to this coordinate system, where

everything's expending in a complicated way, because of the various time dilations

and Lorentz contractions associated with the motions that are taking place in our

expanding universe.

So what you'll need to do is to figure out the relationship between these two

coordinate systems. And when you do, and actually compare the answers, is you

find that they actually do agree exactly. This is all perfectly consistent with special

relativity, but the special case where there is no gravity. OK. Ready to leave

cosmological redshift altogether, unless there are any further questions? OK. In that
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case, Onward to the next major topic.

We've now finished what I wanted to say about the kinematics of homogeneously

expanding universes, and now we're ready to talk about the dynamics. What

happens when we try to think about what gravity is going to do to this universe, to

be able to calculate how a of t is going to vary with time. That will be the only goal,

to understand the behavior of a of t.

Now this problem, in a way, goes back to Isaac Newton. And I might just give a little

aside here, and mention that one of the fun things about cosmology, actually, is that

if one looks back at the history of cosmology, many great physicists have made

great blunders in trying to analyze cosmological questions. And in the discussion

today, we'll be discussing one of Newton's blunders. And to me, it's very consoling

to know that even physicists as great as Newton can make stupid mistakes. And he

actually did make a stupid mistake, in terms of analyzing the cosmological effect of

his own theory of gravity.

At issue was Newton's view of the universe, and Newton, like everybody, really, until

Hubble, believed that the universe was static. He imagined the universe as a static

distribution of stars scattered through space. And early in his career, from what I

understand of the history, he assumed that this distribution of stars was finite, and

an infinite background space. But he realized at some point that if you had a finite

distribution of mass, in otherwise empty space, that everything would attract

everything else, with his one over r squared force of gravity-- which he knew about,

he invented it-- and the result would be everything would collapse to a point. So he

decided that would not work, but he was still sure everything was static. Because

everything looked static, stars don't seem to move very much. So he asked what he

could change, and decided that instead of assuming that the stars made up a finite

distribution, he could assume that they were an infinite distribution, sharing all of

space. And he reasoned-- and this is really where the fallacy showed up-- but he

reasoned that if the stars filled the infinite space that, even though they would all be

tugging on each other through the force of gravity, they wouldn't know which way to

go. And since they wouldn't know which way to go, because they'd be tugged in all
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directions, they would stand still. So he believed that an infinite, uniform, distribution

of mass would be stable-- that there'd be no gravitational forces resulting from the

masses in this infinite distribution.

And I have some quotes here, which I think are kind of cute, so I'll show them to

you. Newton had a long discussion about these issues with Richard Bentley, the

theologian. And we get to read about it, because all these letters have been

preserved. In fact, I'm told that the original letters are actually still in existence at

Trinity College in Cambridge University. And you can find them on the web even, I'll

give you a web reference for the text of these letters, and they're in books and

various places.

So let me read this to you. I think it's a cute quotation. "As to your first query"-- by

the way, I think we don't have the letters that Richard Bentley sent to Newton, only

the responses. But Newton fortunately responded in a way that made the questions

pretty clear, so it's not an important problem in understanding what's going on.

Newton says, "It seems to me that if the matter of our sun and planets and all the

matter of the universe were evenly scattered throughout all the heavens, and every

particle had an innate gravity toward all the rest, and the whole space throughout

which this matter was scattered was but finite, the matter on the outside space

would, by its gravity, tend toward all the matter on the inside"-- this is a finite

universe he's talking about -- and he says, "that by its consequence, everything

would fall down into the middle of the whole space, and there compose one great

spherical mass." So, there he's describing how it would not work if you had a finite

collection of matter.

But, he says, "If the matter was evenly disposed throughout an infinite space, it

could never convene into one mass, but some of it would convene into one mass,

and some into another, to as to make an infinite number of great masses, scattered

at great distances from one to another, throughout all that infinite space." So he

thought there'd be local coagulation, which of course is what we see in our real

world. We see stars that have formed, and now we know about galaxies, which

Newton had no way of knowing about. That's the kind of coagulation process that
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he's discussing. And he-- oops, sorry. "And thus might the sun and the fixed stars

be formed, supposing the matter were of a lucid nature."

That's a cute phrase. I can tell you what it means, it may not be obvious. But at this

point, nobody had any idea what the sun was made out of, and why the sun was

different from the earth. In fact nobody really had much of a real idea what the earth

was made out of either, here. Chemistry wasn't really invented yet. So the

assumption was that there were two kinds of matter, lucid matter and opaque

matter. Where lucid matter is the stuff the sun is made out of, and the stars, that

glows, and is fundamentally different in some way, that was of course not

understood at all, from opaque matter, which is what the Earth is made out of. You

can't see through it, and it doesn't, obviously, glow. So here, when he's talking

about matter forming the stars and the sun, he says if the matter was lucid, if it was

the kind of matter that glows.

Going on-- so far, what he said sounds pretty good. Going on, he goes on now to

talk more about this lucid versus opaque business. And I think it's cute. I don't know

where exactly it's going, but it shows something about Newton's personality, which

one might not have known otherwise. "But how the matter should divide itself"-- I

should also warn you, all of this is one sentence. If you think sometimes my

sentences sound convoluted, just think how lucky you are that you don't have

Newton here as your lecturer. This is just impossible. So, "But how the matter

should divide itself into two sorts"-- how we'd have lucid and opaque matter in the

right places-- "and that part of it which is to comprise a shining body should fall

down into one mass, and make a sun, and the rest, of which is fit to compose an

opaque body, should coalesce not into one great body, like shiny matter, but into

many little ones"-- somehow he's forgotten about the stars here, when he's talking

about the sun and the planets, many planets and one sun.

So he says that, "how the opaque matter should fall instead into many little

masses"-- and then he talks about other possibilities. It's wonderful the way he lists

all the possibilities. "Or," he says, "if the sun were at first an opaque body, like the

planets, or if the planets were lucid bodies like the sun, how he alone"-- he being
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the sun, if you track everything back, "how the sun alone should be changed into a

shiny body, while all the"-- lost track -- "where all they"-- of the planets-- "continue to

be opaque, or"-- he's considering all possibilities-- "or they all be changed to

opaque ones, while he,"-- the sun-- "remains unchanged as a lucid one."

He does not know how to explain all that, is what he's saying. Bottom line of the

sentence is, I don't know, I don't have a clue. And he says, "I don't think it's

explicable by mere natural causes, but am forced," Newton says, "to ascribe it to the

council and contrivance of a voluntary agent." So the theory of intelligence design,

as well the theory of gravity, actually both go back to Newton, it turns out. Newton

was a very religious person, and in certain aspects of physics, he was happy to

ascribe to a voluntary agent, as he calls it. I have some references here, and I'll be

posting this so you'll be able to read those references and type them in, if you want.

Now Newton decided that you could not have a finite distribution, because it would

collapse. If you had an infinite distribution, he thought it would be stable, but he

apparently had heard different arguments to that same conclusion. And one

argument that you might give for saying that the infinite distribution would be stable

would be the argument that if you look at the force one any one particle, there is an

infinite force pulling it to the right-- my right, your left-- and an infinite force pulling it

to my left, your right, and since they're both infinite, they would cancel each other.

Newton did not accept that argument. He was sophisticated enough to realize that

infinity minus infinity isn't necessarily zero. And he has a bit of a tirade on that, that I

thought was worth quoting.

And this is a second letter to the same Richard Bentley. I guess it was Bentley who

made this argument, and Newton rejected it. Infinity minus infinity, Newton realized,

is ambiguous. It's not something that we should necessarily think of zero. "But you

argue in the next paragraph of your letter that every particle of the matter in the

infinite space has an infinite quantity of matter on all sides, and by consequence, an

infinite attraction every way, and therefore must rest in equilibrio, because all

infinities are equal:"-- he's summarizing Richard Bentley's argument-- "yet you

suspect a parologism"-- that means logical error, I think-- "in this argument: and I
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can see the paralogism lies in the position that all infinities are equal. The generality

of mankind consider infinities no other ways than indefinitely"-- and in this sentence

they said all infinities are equal-- "though they would speak more truly if they should

say that they are neither equal nor unequal, nor have any certain difference or

proportion, one to another."

So he realizes that the ratio of infinity could be anything, and infinity minus infinity

could be anything, all of which is consistent with our modern view of how to do the

mathematics. "In this sense, therefore, no conclusions can be drawn from them

about the equality, proportions or differences of things, and they that attempt to do

so usually fall into paralogisms." He goes on, now I just have one more Newton

quote-- I like Newton quotes--

I have one more Newton quote, again from the same series of letters. These are all

from 1692 and 1693, I believe, where he gives an example-- I think this follows the

quotes of the previous slide immediately-- where he gives an example of a false

argument that you get into-- and apparently it's an argument that he had heard from

other people-- if you think all infinities are equal. What he says is, "So when men"--

he doesn't say who men are, and I don't really know the history. He may referring to

some particular philosophers at the time-- "when men argue that the infinite

divisibility of magnitude by saying that an inch may be divided into an infinite

number of parts, the sum of those parts would be an inch-- and a foot can be

divided into an infinite number of parts, the sum of those parts must be a foot-- and

therefore, since all infinities are equal, these sums must be equal."

Understand the argument here. He's saying that if you divide and inch into an

infinite number of parts-- this is all you've been given as a foil. He's not claiming the

argument is right, he's claiming it's wrong-- that argument is that if you divide an

inch into an infinite number of parts, you get an infinite number of points, if you put

them together, you get an inch. If you divide a foot into an infinite number of parts,

you get an infinite number of points, and if you put them together, you should get a

foot. But they're both an infinite number of points in the description. So if you think

all infinities are equal, the infinite number of points that make an inch should be the
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same as the infinite number of points that make a foot, therefore a foot should equal

an inch, obviously. Right. Not right, he know.

So he says that the falseness of the conclusion shows an error in the premises, and

the error lies in the position that all infinities are equal. So Newton has given us a

very nice example of how you can convince yourself that you get into logical

paradoxes if you pretend that all infinities are equal. But, this does not change the

fact that Newton was still convinced that an infinite distribution of mass would be

stable. The argument that convinced him was not the infinity on each side, but

rather the symmetry. Newton's argument, the one he believed, was that if you look

at any point in this infinite distribution, if you look around that point, all directions

would look exactly the same, with matter extending off to infinity, and therefore

there'd be no direction that the force should point on any given particle. And if

there's no direction in that force at the point, it must be zero. That was the argument

Newton believed.

OK. What I want to do now is to talk about this in a little bit more detail, and try to

understand how modern folks would look at the argument. And by the way, I might

just add a little bit more about the history first. Newton's argument, as far as I know,

was not questioned by anybody for hundreds of years, until the time of Albert

Einstein. Albert Einstein, in trying to describe cosmology using his new theory of

general relativity, was the first person, as far as I know, to realize that even if you

had an infinite distribution of mass, it would collapse-- and we'll talk about why. And

Einstein did realize that the same thing would happen with Newtonian physics, it's

not really a special feature of general relativity, it just somehow historically took the

invention of general relativity to cause people to rethink these ideas and realize that

Newton had been wrong. So, what's going on.

The difficulty in trying to analyze things the way in which Newton did is that Newton

was thinking of gravity, in the language that he first proposed it, as a force at a

distance. If you have two objects in space, the distance r apart, they will exert a

force on each other proportional to one over r squared. Since the time of Newton,

other ways of describing Newtonian gravity itself have been invented, which make it
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much more clear what's going on. The difficulty in using Newton's method-- we'll talk

about in more detail in a few minutes-- but it's simply that we try to add up all of

these one over r squared forces, you get divergent sums that you have to figure out

how to interpret. But to understand that Newton couldn't possibly have been right,

the easiest thing to do is to look at other formulations of Newton's gravity. And I'll

describe two of them, both of which will probably have some familiarity to you.

The first one I'm quite sure will. And I'm going to describe it by analogy with

Coulomb's law, because 802 goes a little further with Coulomb's law than any

course you are likely to have taken has gone with gravity. But Coulomb's law is

really the same as the force law of gravity. So Coulomb's law says that any charged

particle will create an electric field, which is the charge divided by the distance

squared times the unit vector pointing radially outward. That's Coulomb's law.

People can-- sometimes there's constants in here, depending on what units you

measure q in, but that won't be important for us. So I'm going to assume we're

using this where that constant is one.

You know that Coulomb's law can be reformulated in terms of what we call Gauss's

law. If Coulomb's law is true, you can make a definite statement about what

happens when you integrate the flux of the electric field over any surface. It's

proportionate to the total amount of charge inside. So Coulomb's law implies

Gauss's law, which says that the integral over any closed surface of E dotted into da

is equal to 4 pi times the total enclosed charge. q encloses the total amount of

charge inside that volume. And what constants appear depends on what constants

appear here, which depends on what units you're using, but these equations are

consistent. Those are the correct constants, if you measure charge in a way which

makes the electric field be given by that simple formula.

OK, so I'm going to assume you know this, that you learned it in 802 or elsewhere. If

this is true, then, since this is the same inverse square law, if we write down

Newton's law of gravity, almost as Newton would have written it, we can express it

as the acceleration of gravity at a given distance from an object. So we could write

Newton's law of gravity by saying the acceleration of gravity is equal to minus
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Newton's constant times the mass of the object, the analog of the charge up there,

divided by r squared times r hat.

Again, it's the inverse r squared law, and the point radiating outward is just like

Coulomb's law, except for the constant out front. The constant actually has the

opposite sign, which is important for some issues, but not for what we're saying

now. The important point is that this can also be recast as a Gauss's law, and it's

called Gauss's law of gravity. And the only thing that differs is a constant out front,

so it's a trivial transformation. The integral over any closed surface of the

gravitational acceleration vector, little g dotted into da is equal to minus 4 pi g times

the total mass enclosed. The only difference is the minus sign, and the factor of g,

which follow from the difference of the minus sign and the factor of g in the formula

on the left. OK, does everybody believe that?

OK, now let's think about this homogeneous distribution of mass that Newton was

trying to think about. Newton's claim was that you could have a homogeneous

distribution of mass filling all of the infinite space, and that would be static, that is,

there would be no acceleration. No acceleration means Newton is claiming in this

language that little g could be zero everywhere. But if you look at this formula, if little

g is zero everywhere, then the integral of g over any surface is going to zero, and

therefore the total mass enclosed had better be zero. But if we have a uniform

distribution of mass, the total mass enclosed will certainly not be zero for anything

with non-zero volume. So clearly this assertion that the system would be static was

in direct contradiction with the Gauss's law formulation of Newton's law of gravity.

Just for the fun of it, I'll give you another similar argument using another more

modern formulation of Newtonian gravity. Another way of formulating Newtonian

gravity, which you may or may not have seen-- and if you haven't seen it, don't

understand what I'm saying, don't worry about it, it's not that important. But for

those of you who have seen it, I'll give you this argument. Another way of

formulating Newtonian gravity is to introduce the gravitational potential. So I'm going

to use the letter phi for the gravitational potential. I'll tell you in a second how that

relates to gravity-- well, I guess I'll tell you now. It's related to the gravitational
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acceleration by g is equal to minus the gradient of phi, and gradient of phi is

something that you probably all learned in 802, but I'll write down the formula

anyway. It's equal to i hat, a unit vector in the x direction, times the derivative of phi

with respect to x, plus j hat, a unit vector in the y direction, times the partial of phi

with respect to y, plus k hat times the partial of phi with respect to z. And once one

defines this gravitational potential, one can write down the differential form of the

Gauss's law, which becomes what's called Laplace's equation. And it says the del

squared phi is equal to 4 pi times Newton's constant times rho, where rho is the

mass density.

And this is called Laplace's equation, and if you're given the mass density, it allows

you to find the gravitational potential, and then you can take its gradient, and that

determines what g is. And it's equivalent to the other formulations of gravity. But it

gives us another test of Newton's claim that you could have a homogeneous

distribution of matter, and no gravitational forces. If there are no gravitational forces,

then g would have to be zero, as we said a minute ago, and this formulation of g is

zero, that implies the gradient of phi is zero.

If we look at the formula for the gradient, it's a vector. For the vector to be zero,

each of the three components has to be zero, and therefore the derivative of phi

with respect to x has to vanish, the derivative of phi with respect to y has to vanish,

the derivative of phi with respect to z has to vanish, that means phi has to be

constant everywhere, it has no derivative with respect to any spacial coordinate. So

if g vanishes, the gradient of phi vanishes, and phi is a constant throughout space.

And if phi is a constant throughout space, now we can look at this formula-- and I

forgot to write down the definition of del squared. Del squared phi is defined to be

the second derivative of phi with respect to x squared, plus the second derivative of

phi with respect to y squared, plus the second derivative of phi with respect to z

squared. So if phi is a constant everywhere, as it would have to be if there were no

gravitational forces, then one can see immediately from this equation that del

squared phi would have to be zero, and one can see from this equation that rho

would have to be zero, there would have to be no mass density. But Newton wanted

to have a non-zero mass density, the matter of the universe spread out uniformly
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over an infinite space. So this is another demonstration that Newton's argument was

inconsistent. Yes.

AUDIENCE: I'm sorry, what does phi represent?

PROFESSOR: Phi is really defined by these equations, it's defined, really, by this equation. The

name is that it's the gravitational potential.

AUDIENCE: Potential.

PROFESSOR: And its physical meaning is simply that it gives you another way of writing what g is.

AUDIENCE: Yeah.

PROFESSOR: Any other questions? OK, so the conclusion seems to be that Newton has not

gotten the right answer, here, but we still have to analyze Newton's argument a little

bi more carefully, to see exactly where he went wrong. So, the next thing I want to

talk about is the ambiguity associated with trying to add up the Newtonian

gravitational forces, as Newton was thinking, for an infinite universe. I mentioned

that the real problem with Newton's calculation is that the quantum he was

calculating actually diverges, and you have to be more careful about trying to

calculate it in a reliable way.

So to make this clear, I want to begin by giving an example of this general notion of

integrals that give ambiguous values. And I want to define just a couple of

mathematical terms. I want to consider just-- again, starting talking about general

functions, and when integrals are well defined and when they're not. I want to

imagine that we just have some arbitrary function f of x where x would not just be

one variable.

We'll generalize this to three dimensions, which is the case that we'll be interested

in, but we'll start by talking in terms of one variable. If we have a function f of x, we

can discuss what I'll call I sub 1, which is the integral, from minus infinity to infinity,

of f of x dx. This is exactly the kind of integral that you're thinking of when we

wanted to-- thinking about adding up all the gravitational forces acting on a given
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body. Now I want to consider the case where I1 is finite.

I'm sorry. I need to first define more carefully what I mean by I1. OK, to even define

what you mean by this minus v to infinity, you should say something a little bit more

precise. So we could define I1 a little bit more precisely, and I'll call this I1 prime, for

clarity. This will really just be a clearer way of describing what one probably meant

when one wrote the first line. We can define the integral from minus infinity to infinity

as the limit, as some quantity L goes to infinity, of the integral from minus L to L of f

of x dx. So this says to do the integral from minus L to L, and if we assume f of x is

itself finite, this is always finite. I will assume f of x itself is finite, we'll only worry

about the convergence of the integral. So for any given L, this is a number, then you

can ask, does this number approach a limit as L goes to infinity? And if it does, you

say that's the value of this integral. That just defines what we mean by the integral

from minus infinity to infinity.

I want to now consider the case where that exists. So consider the case where I1

prime is-- I'll write is less than infinity, meaning it has some finite value. The limit as

L goes to infinity exists. But now, I want to also consider-- and I'll move on to the

next blackboard-- to consider this-- consider an integral that I'll call I2, for future

reference, which is just defined to be the integral from minus infinity to infinity.

Defined as the same kind of limit that we used here, but I won't rewrite it. I'll just

assume that the integral from minus infinity to infinity means that limit. But I want to

consider the integral from minus infinity to infinity of the absolute value of f of x dx.

And now I want to introduce some terminology. If I2 is less than infinity, if it

converges, then I1 is called absolutely convergent. So absolutely convergent means

that it would converge, even if you had absolute value signs. Conversely, this I2 is

divergent-- and I'll just write that as I2 equals infinity, if that limit does not exist, if its

a divergent integral. But remember, we assumed I1 did exist, so I1 still converges,

but it's called conditionally convergent. So if an integral converges, but the integral

of the absolute value of that same client does not converge, that's the case that's

called conditional convergence.
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And the moral of the story, that I'll be beginning to tell you now, is that conditionally

convergent integrals are very dangerous. What makes them dangerous is that

they're not really well defined. You can get any value you want by adding up the

integrand in different orders. As long as you stick to a particular order, which is how

we define the symbol, you will get a unique answer, but if, for example, you just shift

your origin, you can get a different answer, which is something you don't usually

expect. You usually think of just integrating over the whole real line, it doesn't matter

what you took to be the center of the line. So things become much less well defined

when one is discussing conditionally convergent integrals.

And before we get to the particular integral that we're really interested in, which is

trying to add up the gravitational forces of and infinite distribution of matter, which I'll

get to, I'm going to give you an example of a very simple function that just illustrates

this ambiguity, that the integral converges, but is not absolutely convergent. You

can get any answer you want by adding it in different orders-- adding up the pieces

of the integral in different orders. So let me consider an example-- and this is just to

illustrate the ambiguity-- the example I'll consider will be a function f of x, which is

defined to equal plus 1 if x is greater than zero, and minus one if x is less than zero.

And I have neglected to specify what happens if x is exactly equal to zero, but when

you integrate, that doesn't matter. A single point never matters. So you could

measure it's anything you want at x equals zero, it won't change anything you're

going to be saying.

Let me draw a graph of this. f of x versus x. I'll put plus 1 there, and minus 1 there.

The function is plus 1. Maybe I have a little bit of colored chalk here to draw the

function. The function is plus 1 for all positive values of x, and minus one for all

negative values of x. And there's the function. And if we integrate it symmetrically,

following this definition of what we mean by integrating from minus infinity to infinity,

we do get a perfect cancellation. When you integrate from minus L to L, we get

zero, because you get a perfect cancellation between the negative parts and the

positive parts. And then if you take the limit as L goes to infinity, the limit of zero is

zero. There's not really any ambiguity to that statement.
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So in the order specified, this has unique integral, which is zero. But, it depends on

how you've chosen to add things up. In particular, if you just change your origin, and

integrate starting moving outward from the new origin, you'll get a different answer,

and that's what I want to illustrate next. Suppose-- suppose we consider the limit as

L goes to infinity, we'll pick the limit the same way, but instead of integrating from

minus L to L, we can integrate from a minus L to a plus L of f of x dx. Now this is

really the same integral, we've just basically changed our origin by integrating from

a outwards. In the special case a equals zero, it's exactly the same as what we did

before, but if a is non-zero, it means that our integral is centered about x equals a,

instead of centered about x equals zero.

So we can draw that on the blackboard. If we let a be over here, our integral will go

from a minus L, and that will be to the left of distance L, you will extend to a plus L,

which will be to the right by distance L. The integral defined by the equation on the

blackboard at the left will correspond to that region of integration. And the

specification is that we should do that interval first, and then take the limit as L goes

to infinity, and see what we get.

It's easy to see what we will get. Once L is bigger than a, you can see that the

answer won't change any more, as we make L bigger. As you make L bigger, we

will always be adding a certain amount of minus 1 on the left, and certain amount--

the same amount of plus 1 on the right, and they will cancel each other once L is

bigger than a. And we don't care about small l, because we're only interested in

taking the limit of large L, but we should look at what happens when L equals a, and

then from any bigger value of L will give us exactly the same number. And when L

equals a, the integral will go from 0 up to 2a-- a plus L which is a equals L, so that's

2a. So the integral will be only on the positive side, and we'll have a length of 2a,

and that means the integral will be 2a, because we're just integrating one from 0 to

2a. And that will be what we get for any bigger value of L also, because as we

increase L, as I said, we just get a cancellation between adding more plus 1 on the

right, and adding more minus 1 on the left. So this limit has a perfectly well defined

value, which is 2a.
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And a is just where we chose to start integrating, so a could be anything. We could

choose a to be anything we want if we're free to integrate in any order. So we can

get any answer we want, if we're free to integrate in any order, to add up the pieces

of this integral in the order that we choose. And that is a fundamental ambiguity of

conditionally convergent integrals. And what we'll see is that trying to add up the

force on a particle in an infinite mass distribution is exactly this kind of conditionally

convergent integral. And that's why you get any answer you want, and it doesn't

really mean anything unless you do things very carefully.

OK. Let's move on. We only have a few minutes left, which I guess means I will set

up this calculation, but not quite get the answer, and we'll continue next time. I

actually have some diagrams here on my slides. What I want to do now, is calculate

the force on some particle in an infinite mass distribution, and show you that I can

get different answers, depending on what order I add things up. I will add things up

in a definite order at each stage, so I will get a definite answer at each stage,

though I'll get different answers, depending on what ordering I choose.

So, we're going to start by trying to calculate-- and the only thing [? of interest, ?]

actually, in calculating the gravitational force on some point, p in an infinite

distribution of mass. Mass fills the slide, and everything, out to infinity. And we're

going to add up that mass in contributions that are specified.

And for our first calculation, we're going to add up the forces for masses that are

defined in concentric shells, where we're going to take the innermost shell first, then

the second shell, then the third shell, going outward from the center. In that case,

it's easy to see that the force on p calculated in that order of integration is 0,

because every shell has p exactly at the center, and by symmetry, it has to cancel

exactly. In fact, we know-- and we'll use this fact shortly-- that the gravitational field

of a shell, inside the shell, is exactly zero-- Newton figured this out-- and outside the

shell, the gravitational field of a shell looks exactly the same as the gravitational field

of a point mass located at the center of the shell with the same total mass. So we're

going to be using those facts. And clearly those facts indicate that, for this case, the

answer is 0. P equals 0.
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Now we're going to consider a more complicated case-- going too far, here, don't

want to tell you the answer yet-- this more complicated case, we're going to still

calculate the force at the point p, but we're going to choose concentric spherical

shells which are centered around a different point, q. So q just defines the shells

that we're going to use for adding things up, and we're still going to add up all the

shells out to infinity, so we're going to be adding up the force on p due to the entire

infinite mass distribution, but we'll be taking those contributions in a different order,

because we're going to be ordering it according to shells that are all centered on q,

starting with the innermost, and then the second, and then the third, and so on. Now

in this case, we can first talk about the contribution of the shaded region, which are

all the shells around q which have radii which are less than the distance to p. For all

of these shells, p lies outside the shell. And therefore all of those shells act just like

a point mass, with the same total mass concentrated at q, the center of all those

spheres. So the mass that's in the shaded region will give a contribution to the force

at p, which is just equal to the force of the mass given by the same total mass the

point q, located at q.

On the other hand, all the shells outside will be shells for which p is inside. P is no

longer at the center of those shells, but Newton figured out, and I'll assume that we

all believe, it doesn't matter. Inside the spherical shell, the gravitational force is zero

anywhere, no matter how close you are to the boundaries. It just cancels out

perfectly. As you get closer to one boundary, you might think you'd be pulled toward

that boundary, but-- let me just tell you what's happening here-- as you get closer to

one boundary, it is true that the force pulling you towards the particular particles at

the boundary get stronger, because it's 1 over r squared, but as you get close to

this boundary, there's more mass on this side, because all the mass except for a

little sliver is on the other side. And those two effects cancel out exactly.

So the force on a particle inside a shell is exactly zero, as you can prove very easily

by the way, from the Gauss's law of formulation of gravity. And therefore, the outer

shells give no contribution. So we've completely calculated now the force at p is just

equal to the force due to the shaded mass. It's just given by that simple formula, it's
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g times the total mass, divided by b squared, that would be it's distance between q

and p. And it's non-zero. So you get 0 or non-zero answer, depending on what

ordering you chose for adding up the pieces of the mass that are going to make up

this infinite distribution. And furthermore, this answer could be anything you want,

because I could let b be anything I want. And this answer depends on b, and

becomes arbitrarily large in magnitude as b gets bigger. The mass grows like b

cubed. It might look like it falls with b, but actually it grows with b. And we could get

a point in any direction, by choosing q on any side we want of p, so we can get,

really, any answer we want by using this particular way of adding up the masses.

Yes.

AUDIENCE: Well, although we can get any answer we want, every answer [INAUDIBLE]

PROFESSOR: Every answer, say again?

AUDIENCE: Like every single one of those answers corresponds to a setup. I mean like the g

equals 0, [INAUDIBLE]

PROFESSOR: Well the reason it's a problem is that these shells don't really exist. We're just

thinking about these shells. The shells only determine what order we are going to

use for adding up the different contributions. The matter is just uniformly distributed

and there's no shells present. The shells are purely a mental construct, which

should not affect the answer. This is not part of the physical system at all. The shells

only reflect the order that we have used to add up the masses.

So we'll stop there. If anybody has questions, we can talk after class, and we can

talk more about the question at the beginning of the next class, but class is over for

now.
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