8.311: Electromagnetic Theory Problem Set \# 2 Due: 2/19/04

Conservation laws. Magnetic dipole.
Reading: Schwinger, Chap. 3, 4, and Chap. 28 (or Jackson, Chap. 5, 6)

1. Angular momentum conservation, Schwinger, Prob. 3.5

Show that the angular momentum conservation law for the electromagnetic field can be written as

$$
\begin{equation*}
\frac{\partial}{\partial t} \mathcal{T}+\nabla \cdot \mathcal{K}+\mathbf{r} \times \mathbf{f}=0 \tag{1}
\end{equation*}
$$

where \mathbf{f} is the Lorentz force. Here the angular momentum density is $\mathcal{T}=\mathbf{r} \times \mathbf{G}$ and the angular momentum flux tensor is defined in terms of Maxwell stress tensor $T_{i j}$ as

$$
\mathcal{K}=-\mathbf{T} \times \mathbf{r}
$$

where the cross product refers to the second index of $T_{i j}$.

2. Schwinger, Probs. 2.1, 2.2

a) Write Maxwell's equations with magnetic charge

$$
\begin{align*}
\nabla \times \mathbf{B} & =\frac{1}{c} \frac{\partial}{\partial t} \mathbf{E}+\frac{4 \pi}{c} \mathbf{j}_{e}, & \nabla \cdot \mathbf{B}=4 \pi \rho_{m} \tag{2}\\
-\nabla \times \mathbf{E} & =\frac{1}{c} \frac{\partial}{\partial t} \mathbf{B}+\frac{4 \pi}{c} \mathbf{j}_{m}, & \nabla \cdot \mathbf{E}=4 \pi \rho_{e} \tag{3}
\end{align*}
$$

in terms of a complex vector filed $\mathbf{F}=\mathbf{E}+i \mathbf{B}$, and related combinations of charge and current. Verify that the equations retain their form under the transformation

$$
\mathbf{F} \rightarrow e^{-i \phi} \mathbf{F}
$$

where ϕ is an arbitrary constant. Express this as a transformation of \mathbf{E}, \mathbf{B} and the charge-current quantities. What is the geometric interpretation? What is the particular form of this transformation when $\phi=\pi / 2$?
b) Suppose every charged particle carried electric and magnetic charge in the universal ratio $g_{k} / e_{k}=$ λ. Is there another way of looking at this situation in which we would be unaware of magnetic charges?

3. Schwinger, Prob. 3.7

As in Problem 2, let $\mathbf{F}=\mathbf{E}+i \mathbf{B}, \mathbf{F}^{*}=\mathbf{E}-i \mathbf{B}$. Identify the scalar $\frac{1}{8 \pi} \mathbf{F} \cdot \mathbf{F}^{*}$ the vector $\frac{1}{8 \pi} \mathbf{F} \times \mathbf{F}^{*}$ and the tensor

$$
\frac{1}{8 \pi}\left(\mathbf{F F}^{*}+\mathbf{F}^{*} \mathbf{F}\right)_{i j}=\frac{1}{8 \pi}\left(F_{i} F_{j}^{*}+F_{i}^{*} F_{j}\right)
$$

What happens to these quantities if \mathbf{F} is replaced by $e^{-i \phi} \mathbf{F}$?

4. Magnetic dipole (force and torque)

a) Consider a wire loop of an arbitrary shape, carrying current I and placed in a uniform external magnetic field B. Find the total force and torque on the loop. Express the answer through the magnetic dipole $\mathbf{m}=\frac{1}{2 c} I \oint \mathbf{r} \times d \mathbf{l}$ of the loop.
b) Consider the loop of part a) in a weakly nonuniform field

$$
\mathbf{B}(\mathbf{r})=\mathbf{B}\left(\mathbf{r}_{0}\right)+\left.\left(\mathbf{r}-\mathbf{r}_{0}\right) \cdot \nabla \mathbf{B}\right|_{\mathbf{r}=\mathbf{r}_{0}}+O\left(\left(\mathbf{r}-\mathbf{r}_{0}\right)^{2}\right)
$$

where \mathbf{r}_{0} is chosen near the loop center. Find the total force on the loop, and express it through the loop dipole moment \mathbf{m}.

5. Magnetic dipole (field and interaction)

a) Show that the magnetic field of the current loop of Problem 4 at distances much larger than the loop size is given by the magnetic dipole formula

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\frac{3 \widehat{\mathbf{r}}(\widehat{\mathbf{r}} \cdot \mathbf{m})-\mathbf{m}}{|\mathbf{r}|^{3}} \tag{4}
\end{equation*}
$$

b) Using the result of part a) or otherwise, find the potential energy of interaction between two magnetic dipoles $\mathbf{m}_{1}, \mathbf{m}_{2}$ located at \mathbf{r}_{1} and \mathbf{r}_{2}, respectively.

6. Rotating sphere

A spherical shell of radius a carries charge q which is distributed uniformly over the surface. The sphere is rotating about the z axis with an angular velocity ω.
a) Find the current density \mathbf{j} and the magnetic moment \mathbf{m} of the sphere.
b) Write down the equations for the magnetic field \mathbf{B} inside and outside the sphere and the conditions at the boundary $|\mathbf{r}|=a$ relating the field in the inner and outer regions. Find the magnetic field in the entire space. (Hint: Assume that the field is uniform inside and of a dipole form (4) outside and match the inner and outer field values at the boundary)
c) Relate the field outside the sphere to the sphere magnetic dipole moment \mathbf{m}.
d) Find the electromagnetic angular momentum of the system.
7. (Optional problem) Electric and magnetic charge system, Schwinger, Prob. 3.8
a) Electric charge e is located at the fixed point $\frac{1}{2} \mathbf{R}$. Magnetic charge g is stationed at the fixed point $-\frac{1}{2} \mathbf{R}$. Write down the momentum density \mathbf{G} at an arbitrary point \mathbf{r}. Verify that it is divergenceless by writing it a a curl.
b) Evaluate the electromagnetic angular momentum $\mathcal{T}_{\text {total }}=\int \mathbf{r} \times \mathbf{G} d^{3} r$. Recognize that it is a gradient with respect to \mathbf{R}. Continue the evaluation to discover that it depends only on the direction of \mathbf{R}, not its magnitude. This is the naive, semiclassical basis for the charge quantization condition of Dirac, eg $=\frac{n}{2} \hbar c$.

