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Lecture 22 (Nov. 27, 2017)

22.1 Parity

22.1.1 Some Standard Terminology

When we refer to a scalar, we mean an observable that is invariant under rotations and even under
parity. Examples include ? and p?. There is a different type of object, called a pseudoscalar, that
is invariant under rotations, but odd under parity. An example of a pseudoscalar is the product
S - x; this is invariant under rotations, but odd under parity because S is parity even and «x is
parity odd.

A wvector is an object that transforms as a vector under rotations and is odd under parity.
Examples are « and p. A pseudovector is an object that transforms as a vector under rotations,
but is even under parity. Examples of pseudovectors are L, S, and J.

22.1.2 Wavefunctions Under Parity

Eigenstates of parity satisfy
Ijy) = £), (22.1)

as we know that II has eigenvalues +1 only. If we take the matrix element with a position ket, then
we find

(z|]y) = £(x|) = Lip(z). (22.2)
On the other hand, we can have the parity operator act on the position ket, giving
(z/]y) = (—z[¢) = P(-z). (22.3)

Thus, wavefunctions of parity eigenstates satisfy
b(-) = +0(@). (22.4)

We refer to such wavefunctions as even (+) or odd (—).

22.1.3 Momentum and Angular Momentum

As we have seen, [p,II] # 0. Thus, we cannot simultaneously diagonalize the momentum and parity
operators, i.e., momentum eigenstates are not, in general, parity eigenstates.
As an example, consider the free particle

H==" (22.5)

The energy eigenstates
L
———Pe/h 22.6
V2rh ( )
are not parity eigenstates. However, [II, H] = 0, which means that we can choose energy eigenstates

that are also parity eigenstates in this case. Because the two states

1 .
+p) = —— Fipz/h 22.7
|+p) Nt (22.7)
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are degenerate, we can choose

_ I £-p)
|£p) = 5 (22.8)

as energy eigenstates. These are energy and parity eigenstates, but are not momentum eigenstates.
By contrast, [L,II] = 0, so we can simultaneously diagonalize both orbital angular momentum
and parity. Under a parity operation, the spherical angles (6, ¢) are sent to

0,06) = (m—0,0+m). (22.9)
This tells us that states with a definite angular position transform as
0, ¢) = |7 — 0,0+ ) . (22.10)

We can write the orbital angular momentum eigenstates |¢,m) in terms of these states using the
matrix elements

(0,010, m) ==Yy (0,9), (22.11)

which are known as spherical harmonics.
The spherical harmonic Y is a constant, meaning that

Ié=0m=0)=¢{=0,m=0). (22.12)

The ¢ = 1 states transform together as a vector, i.e., as linear combinations of x, y, z. In particular,
the £ = 1, m = +1 state transforms like x + iy; the £ = 1, m = —1 states transforms like x — iy; and
the £ = 1, m = 0 state transforms like z. Because vectors are odd under parity, this tells us that

Il =1,m) = —|¢=1,m), (22.13)

or equivalently,
n,m(ﬂ - 07 ¢ + ﬂ-) = _}/f,m(ea ¢) . (2214)

In general, Yy, has parity (—1)%.

22.1.4 Selection Rules

Let O be an operator with definite parity, i.e.
[IOTI = O, (22.15)

with A = +1. Consider the matrix elements ()|O[1)') of this operator with two parity eigenstates
|t) and [¢'), such that

Iy) = sly), T[Y) =), (22.16)
with s,s’ = +1. We then have
(Y|O') = (¢ |TIIONII|y)
= Ass' (Y[|O[Y)

where in the first step we have used I1? = 1. This implies that (:)|O|¢)') = 0 unless Ass’ = 1. Thus,
if O is even under parity (A = +1), then |¢) and [¢/') must have the same parity for the matrix
element to be nonzero; similarly, if O is odd under parity (A = —1), then [¢) and |¢') must have
opposite parity for the matrix element to be nonzero. This is a selection rule.

For example, (¢|x|¢') # 0 only when |¢) and [¢) have opposite parity. As a corollary, we see
that the expectation value of @ in any parity eigenstate must be zero.

(22.17)
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22.2 Time Reversal

Classical physics is time-reversal invariant: Newton’s law
mi& = —VV(x) (22.18)

is invariant under t — —t, & — x. Thus, if x(¢) is a valid solution to Newton’s equation, then so is

x(—t).

Consider now the Schrodinger equation,

2
ih%—f = <—;nv2 + V(:B))w(m, t). (22.19)

If we let t — —t, we see that we can get a solution if we take

P(x,t) = Y (x, —t) (22.20)

for some solution v (x,t). This suggests that we should take the time reversal operator © to be
anti-unitary. (Recall that an anti-unitary operator A can be written in the form A = KU, where
K is complex conjugation and U is some unitary operator.) Thus, we have

O(ala) + b|B)) = a*bla) + b*0|5) (22.21)

for any a,b € C and |o), |B) € H.
We now consider combinations of time reversal and time translation operations. Assuming that
time reversal is a symmetry, we require that

[Y(=6t)) = 019 (dt)),  |4(0)) = 0]4(0)) . (22.22)

By using forward and backward time translations from ¢ = 0, we see that

o(-0) = (1+ 10t )lw(0).
o (22.23)
o0} = (1- ot lwco),
so the statements [)(—dt)) = 0| (5t)) and |¢(0)) = 0|(0)) imply that
iHO[y(0)) = 0(—iH)|4(0)) - (22.24)
Thus, we have
iHO = 0(—iH) (22.25)

as an operator equation. Because 6 is anti-unitary, this tells us that [H, ] = 0, exactly as expected
of a symmetry of the Hamiltonian.

As usual, operators transform under time reversal as O — §0O6~!. An operator O is even/odd
under time reversal if

000! = +0. (22.26)

We require that
00t =a, Opd~'=—p. (22.27)

There are two ways to see that p must be odd under time reversal: first, we could consider the
position space representation p — —ihAV, and use that fact that 6 is anti-unitary; alternatively, we
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can use the fact that time reversal should preserve the commutation algebra [z;, pj] = ihd;;, which
requires that p be odd because x is even and the right-hand side contains a factor of i.
Similarly, in order to preserve the commutation algebra [J;, J;| = ihe;jiJ), we need

0J07 ! = —J, (22.28)

meaning that L — —L and S — —S§ under parity. Note that L? — L2, so this tells us that
0|¢,m) < [£,—m). In particular,
016, m) = (=1)™|¢,—m) . (22.29)

Here, the phase factor (—1)™ is a convention choice built into the definition of the spherical har-
monics,

Yo (0,0) = (=1)"Y,—m(0,9). (22.30)

22.2.1 Time Reversal and Spin

We find interesting outcomes when acting on spin—% systems (or systems with other half-integer
spin) with time reversal. The statement

0J.07" = —J, (22.31)

implies for a spin—% particle that

JOl4) = —0J.|+) = —ge|+> . (22.32)
Thus, we see that 8|+) o« |—). In general, there can be some phase 7, so that
0+) =n|-). (22.33)
We can write this equation in the form
0|+) = ne~ ™/ 4) . (22.34)

We could have similarly chosen S, instead of S, or indeed any spin operator in the x,y-plane.
Based on this statement, we write

0 = ne "™W/MK (22.35)

where we have included K because 0 is anti-unitary. We then have
0]-) = ne” mWIK|—) = —n|+) . (22.36)

From this, we see that
0?1+) = 0(nl=)) = 0"0]=) = —Inf*[+) = —|+), (22.37)
where we have used the fact that |#|> = 1 because  is purely a phase. Similarly, 62|—) = —|—).
This means that

6? = —1 (22.38)

holds as an operator equation for a spin—% system. This is true for any system with half-integer
spin. There is a standard phase choice for spin—%, which is to take n = ¢, which gives

0 = ie ™S/ (22.39)
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