8.321 Quantum Theory-I Fall 2017

Prob Set 11

1. Sakurai 4.11

2. Adapted from Sakurai 5.1

A simple harmonic oscillator (in one dimension) is subjected to a perturbation

$$H_1 = bx \tag{2}$$

where b is a real constant.

- (a) Calculate the energy shift of the ground state to *lowest non-vanishing order*.
- (b) Solve this problem *exactly* and compare with the result obtained in (a).
- (c) Next set b = 0 but consider anharmonic perturbations (i) $H_1 = \lambda x^3$, (ii) $H_1 = \lambda x^4$. In each of these two cases find the energy level shifts to lowest non-vanishing order.

Hint: Write $x = \sqrt{\frac{\hbar}{2m\omega}} \left(a + a^{\dagger} \right)$, and work with the matrix elements of the ladder operators.

3. Sakurai 5.2

4. Degenerate perturbation theory

Consider two spin-1/2 particles described by a Hamiltonian

$$H_0 = -J\vec{S}_1 \cdot \vec{S}_2 \tag{3}$$

with J > 0. Find the spectrum of H_0 and analyze how it will change in the presence of a small perturbation

$$H_1 = -BS_1^z \tag{4}$$

with $|B| \ll J$ (the magnetic field acts on one of the two spins). Analyse the problem using perturbation theory in H_1 at leading order in small B.

- 5. Sakurai 5.9
- 6. Sakurai 5.20

MIT OpenCourseWare https://ocw.mit.edu

8.321 Quantum Theory I Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.