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Recitation 3 (Oct. 6, 2017)

3.1 Neutrino Oscillations

This discussion follows Sakurai.
As another example of the dynamics of a two-state quantum mechanical system, we will now

discuss neutrino oscillation. Neutrinos are fundamental particles that have no electric charge and
very small mass. They interact only through the weak and gravitational forces. In nature, we have
observed three flavors of neutrinos, denoted νe, νµ, and ντ , but for simplicity, we will only consider
νe and νµ.

The states |νe〉 and |νµ〉 are referred to as flavor eigenstates, because they are eigenstates of
the weak force Hamiltonian. In other words, the action of the weak force is diagonal on the flavor
eigenstates: the electron neutrino νe couples only to the electron via the weak force, and the muon
neutrino νµ couples only to the muon via the weak force.

However, these flavor eigenstates are not eigenstates of the Hamiltonian H0 describing a free
neutrino. When a neutrino propagates freely (without undergoing interactions), its time evolution
is dictated by the free Hamiltonian. We denote the eigenstates of H0, known as mass eigenstates,
by |ν1〉 and |ν2〉, with corresponding energy eigenvalues E1 and E2, respectively. These are states
of well-defined mass.

We can decompose the flavor eigenstates in the mass eigenstate basis as

|νe〉 = cos θ|ν1〉 − sin θ|ν2〉 ,
(3.1)

|νµ〉 = sin θ|ν1〉+ cos θ|ν2〉 ,

for some mixing angle θ that is determined experimentally. For this problem, let us assume that
|νe〉, |νµ〉, |ν1〉, and |ν2〉 are all momentum eigenstates of fixed momentum p. Because neutrinos
propagate in the mass eigenstate basis, the flavor eigenstates oscillate into one another. That is,
time evolution is dictated by the free Hamiltonian H0, so if an electron neutrino propagates for a
time t, its two mass eigenstate components will evolve with different frequencies and thus pick up
a relative phase.

We now wish to calculate the probability that an electron neutrino propagates for a time t and
is found to still be an electron neutrino. We compute

〈 | | 〉 〈 | − 〈 | −iH0t/~νe U(t, 0) νe = (cos θ ν1 cos θ ν2 )e( (cos θ|ν1〉 − cos θ|ν2〉)

= (cos θ〈ν1| − cos θ〈 ~ν | ~
2 ) cos θe−iE1t/ |ν1〉 − cos θe−iE2t/ |ν2〉 (3.2)

= cos2 ~θe−iE1t/ + sin2 ~θe−iE2t/ .

)

Thus, we have

P (νe → νe) = |〈νe|U(t, 0)|ν 2
e〉|

= sin4 θ + cos4 θ + sin2 θ cos2 ~ ~θ ei(E1−E2)t/ + e−i(E1−E2)t/

= sin4 θ + cos4 θ + 2 sin2 θ cos2

[
θ cos(∆Et/~)

]
t

= 1− sin2(2 ) sin2

(
∆E

θ

(3.3)

,
2~

)
where ∆E = E1−E2. Because neutrinos have very small mass, they are highly relativistic in most
conditions. Thus, to a good approximation, the energy eigenvalue for a neutrino in a momentum
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eigenstate is

Ei =
√
p2c2 +m2

i c
4 ≈ pc

(
1 +

m2
i c

2

,
2p2

)
(3.4)

where mi is the mass of the mass eigenstate |νi〉. This gives

∆m2c3
∆E = E1 − E2 ≈ , (3.5)

2p

where ∆m2 = m2
1 −m2

2. Therefore,

2 2

(
∆m2c3t

P (νe → νe) = 1− sin (2θ) sin
4p~

)
= 1− sin2(2θ) sin2

(
∆m2c4

L
,

4E~c

)
(3.6)

where L = ct is the distance travelled by the neutrino and E = pc is the neutrino energy, in the
relativistic limit. By conservation of probability, this requires that

L
P (νe → ν 2 2 2 4

µ) = sin (2θ) sin

(
∆m c ,

4E~c

)
(3.7)

which we can verify by direct computation.
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