8.321 Quantum Theory-I Fall 2015

Midterm quiz

28 Oct 2015

Useful facts.

$$\int du e^{-au^2} = \sqrt{\frac{\pi}{a}} \tag{1}$$

Ground state wave function of a 1d simple harmonic oscillator of mass m, frequency ω is

$$\psi_0(x) = N_0 e^{-\frac{x^2}{2x_0^2}}$$
$$x_0 = \sqrt{\frac{\hbar}{m\omega}}$$
$$N_0 = \frac{1}{\pi^{\frac{1}{4}}\sqrt{x_0}}$$

1. (20 points)

- (a) For a hermitian operator G, suppose that $\langle a|G|a\rangle = 0$ for all $|a\rangle$. Show that G = 0.
- (b) Prove part (a) for an arbitrary operator G by writing it as the sum of a Hermitian operator and an anti-Hermitian operator.
- (c) Prove that, given operators A and B, if $\langle a|A|a\rangle = \langle a|B|a\rangle$, then A = B.
- (d) Prove that, if $\langle a|G|a\rangle = 1$ for all normalized $|a\rangle$, then G = 1.

2. (20 points)

An atom can be in one of two internal states - the ground state $|g\rangle$ and an excited state $|e\rangle$. The energy difference between these two states is Δ . The atom is prepared at t = 0 in a state

$$|\theta_0;0\rangle = \frac{1}{\sqrt{2}} \left(|g\rangle + e^{i\theta_0} |e\rangle \right) \tag{2}$$

- (a) Calculate the mean value of the energy in this state relative to the ground state.
- (b) Under time evolution show that the state retains the same form with a time dependent θ , *i.e.*, $\theta = \theta(t)$ (upto a time dependent phase). Calculate $\theta(t)$ explicitly.
- (c) Show by explicit calculation with the state $|\theta(t); t\rangle$ that the mean energy does not change with t.

3. (30 points)

Consider a particle moving in a circle of radius R. If we denote the position of the particle as x we must regard x and $x + 2\pi R$ as the same physical location. Wavefunctions in the Hilbert space of this particle must be periodic:

$$\psi(x + 2\pi R) = \psi(x) \tag{3}$$

Consider plane wave states $|p\rangle$ with definite momentum p defined through their wave function

$$\langle x|p\rangle = Ae^{\frac{ipx}{\hbar}} \tag{4}$$

- (a) Show that the periodicity restriction on the Hilbert space forces p to take certain discrete values p_n . Find the allowed p_n and the corresponding normalized wave functions.
- (b) The free particle Hamiltonian is

$$H = \frac{p^2}{2m} \tag{5}$$

Obtain the energy eigenvalues and their degeneracies.

(c) Define the operator O through

$$O|x\rangle = Re^{-\frac{ix}{R}}|x\rangle \tag{6}$$

What is $O|p_n\rangle$? What is $O^{\dagger}|p_n\rangle$?

(d) Compute the commutator [O, p].

4. (**30** points)

Consider a quantum particle in a one dimensional oscillator potential with the Hamiltonian

$$H_0 = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$
 (7)

The particle is initially in its ground state. Starting time t = 0 the particle suddenly is subjected to a constant force F_0 leading to an extra term in the Hamiltonian

$$H_1 = -F(t)x\tag{8}$$

(The 'force' F(t) is 0 for t < 0, and is F_0 for t > 0.)

- (a) What is the ground state wave function in the position representation of the new Hamiltonian that describes the system for t > 0?
- (b) Write the same ground state wave function in momentum representation.
- (c) Assume that at $t = 0^+$ the particle is in the same state it was in for t < 0. It's subsequent time evolution is determined by the new Hamiltonian. Calculate the probability that if the state of the particle is measured at $t = 0^+$, it will be found in the ground state of the new Hamiltonian?
- (d) Calculate $\langle x \rangle$, $\langle p \rangle$ as a function of time for t > 0.

MIT OpenCourseWare https://ocw.mit.edu

8.321 Quantum Theory I Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.