Physics 8.322, Spring 2003 Homework \#4

Due Monday, March 10 by 4:00 PM in the 8.322 homework box in 4-339B.

1. This problem not included for copyright reasons.
2. Consider a spin s particle in a time-dependent magnetic field

$$
\mathbf{B}(t)=B(\sin \theta \cos \phi(t), \sin \theta \sin \phi(t), \cos \theta)
$$

Consider an initial state $|\psi, 0\rangle=|m, 0\rangle$ in an eigenstate of the Hamiltonian

$$
H(t)=2 \mathbf{B}(t) \cdot \mathbf{J} / \hbar
$$

From the adiabatic theorem,

$$
|\psi, t\rangle=e^{i \alpha_{m}(t)}|m, t\rangle
$$

Compute $\alpha_{m}(t)$.
3. Compute the geometrical phase γ_{m} generated by a complete rotation of the B field in the previous problem, using Berry's formulae (S.16, S.14) on page 467 of Sakurai. Compare to the answer from problem 3.
4. Prove that $\nabla \cdot \mathbf{V}_{m}(\mathbf{R})=0$, where $\mathbf{V}_{m}(\mathbf{R})$ is given by (S.14) in Sakurai.

