Quantum Field Theory I (8.323) Spring 2023
Assignment 1

Feb. 6, 2023
e Please remember to put your name at the top of your paper.

Readings

e Peskin & Schroeder Sec. 2.1 and 2.2

e Weinberg vol 1 Chap. 1

Review of Special Relativity: Lorentz transformations

e We use the notation

ot = (20, 2" = (t, 2", 2%, 2°) = (1, T) .

When used in the argument of a function we often simply write x* as x, e.g.

o) = o(x) .

The four momentum is written as

=" p") = (E,p)

0 0o 0
50 = (57 907) =07

e We use the mostly-plus form of the Minkowski metric, i.e.

and the derivative

A

n" = diag(—1,1,1,1) = 1,

where diag(---) denotes a diagonal matrix with diagonal entries given by ---.

N is the inverse of n*”, as
v

WW’\V = 5u

where 0,,” is the Kronecker delta symbol.

e Note

I
0
&
!

T, =nur’ = (—t,7),  p,=(-p",p")



e We will also use the notation

2? = atx, = —t* + 17, (8)
P’ =pup = B +p° (9)

and
p-r=pat =ple,=—-Et+2-p. (10)

e A Lorentz transformation acts on z* and p# as
= o't = Ao P — p* = AP pY (11)
where the matrix A#, satisfies the relation
NN = (12)

or in a matrix notation

AnAt =1 (13)

where the superscript ¢ denotes transpose. We can raise and lower the indices
of A by " and 7),,, and equation (13) can also be written as

AP A 8 = M (14)
e Under a Lorentz transformation (11), a scalar field transforms as
¢(x) = ¢'(2) = o(x) ; (15)
a vector field transforms as
Au(z) — Al (2)) = A A () (16)
a second rank tensor field transforms as
Ty (&) = T, (2') = AT () a7
and so on.
e Infinitesimal Lorentz transformations take the form
A =6, +w)” (18)

where
v VA
Wy = —Wyp, w,” = 0w (19)

are infinitesimal numbers.



Problem Set 1

1. Review: Quantum harmonic oscillator in the Heisenberg picture (25

points)

Consider the Hamiltonian for a unit mass harmonic oscillator with frequency w

1
H = 5(]32 + w?i?) .

(20)

In the Heisenberg picture p(t) and z(t) are dynamical variables which evolve

with time. They obey the equal-time commutation relation

[Z(2),p(t)] =1 .
Here and below we set A = 1.

(a) Obtain the Heisenberg evolution equations for Z(t) and p(t).
(b) Suppose the initial conditions at ¢ = 0 are given by

20) =2,  p0)=p

find z(t) and p(t).

(c) It is convenient to introduce operators a(t) and af(t) defined by

Show that a(t) and af(t) satisfy equal-time commutation relation
lat),a'(t)] =1.

(d) Express the Hamiltonian in terms of a(t) and af(t).
(e) Obtain the Heisenberg equations for a(t) and a'(t).
(f) Suppose the initial conditions at ¢t = 0 are given by

a(0)=a, a'(0)=al

find a(t) and af(t).
(g) Express #(t), p(t) and the Hamiltonian H in terms of a and af.

2. Review: Lorentz transformations (15 points)

(21)

(22)

(23)

(24)

(25)



(a) Prove that the four-dimensional J-function

is Lorentz invariant, i.e
0 (p) = 09 (p) (27)
where p* is a Lorentz transformation of p.

(b) Show that
w1(5(3)(k1 — k’g) (28)

is Lorentz invariant, i.e.
= W 0O (K — k) (29)

k1 and ky are respectively the spatial part of four-vectors k}' = (wy, /%) and
k5 = (wa, ko) which satisfy the on-shell condition

k2 =ki=-—m?*. (30)

KM= (W), k) and KV = (w), k) are related to k', k4 by a same Lorentz
transformation.

(c) For any function f(k) = f(k° k', k% k3) prove that

Bk -
/Wz%gf(k), wp = \JR2 +m?2 (31)

is Lorentz invariant in the sense that

/ (;ijrl;%wg f(k) = / (5332%}; f(k) (32)

where kt = AF kY is a Lorentz transformation of k.

3. A complex scalar field (20 points)

Consider the field theory of a complex value scalar field ¢(x) with action

5= [t [-0,000 —V(oP)). I = 60" (33)

One could either consider the real and imaginary parts of ¢, or ¢ and ¢* as
independent dynamical variables. The latter is more convenient in most situa-
tions.

(a) Check the action (33) is Lorentz invariant (see (15)) and find the equations
of motion.



(b)
(c)

()

Find the canonical conjugate momenta for ¢ and ¢*, and the Hamiltonian
H for (33).

The action (33) is invariant under transformation
¢y, P e (34)

for arbitrary constant . When « is small, i.e. for an infinitesimal trans-
formation, (34) become

0p = iag, 09" = —iag” (35)
Use Noether theorem to find the corresponding conserved current j* and
conserved charge Q.

Use equations of motion of part (a) to verify directly that j* is indeed
conserved.

4. The energy-momentum tensor for the complex scalar field theory (20
points)

In this problem we work out the energy-momentum tensor of the complex scalar
theory (33).

(a)

Under a spacetime translation
ot — 2" =t 4 at (36)
a scalar field transforms as

¢'(") = () . (37)
Show that the action (33) is invariant under transformation ¢(z) — ¢'(x).

Write down the transformation of the scalar fields ¢ and ¢* for an in-
finitesimal translation, and use Noether theorem to find the corresponding
conserved currents 7.

The conserved charge for a time translation
H= / d*x T" (38)

should be identified with the total energy of the system, while that for a
spatial translation

P = / >z T (39)

should be identified with the total momentum. Thus 7" is referred to as
the energy-momentum tensor. Write down the explicit expressions for H
and P’. Compare H obtained here with the Hamiltonian of problem 3(b).
Use equations of motion of problem 3(a) to verify directly that 7" is
indeed conserved.
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