
Quantum Field Theory I (8.323) Spring 2023
Assignment 1

Feb. 6, 2023

• Please remember to put your name at the top of your paper.

Readings

• Peskin & Schroeder Sec. 2.1 and 2.2

• Weinberg vol 1 Chap. 1

Review of Special Relativity: Lorentz transformations

• We use the notation

xµ = (x0, xi) = (t, x1, x2, x3) = (t, ~x) . (1)

When used in the argument of a function we often simply write xµ as x, e.g.

φ(xµ) ≡ φ(x) . (2)

The four momentum is written as

pµ = (p0, pi) = (E, ~p) (3)

and the derivative

∂µ ≡
∂

∂xµ
=

(
∂

∂t
,
∂

∂xi

)
= (∂t,∇) . (4)

• We use the mostly-plus form of the Minkowski metric, i.e.

ηµν = diag(−1, 1, 1, 1) = ηµν (5)

where diag(· · · ) denotes a diagonal matrix with diagonal entries given by · · · .
ηµν is the inverse of ηµν , as

ηµλη
λν = δµ

ν (6)

where δµ
ν is the Kronecker delta symbol.

• Note
xµ = ηµνx

ν = (−t, ~x), pµ = (−p0, pi) = (−E, ~p) . (7)
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• We will also use the notation

x2 ≡ xµxµ = −t2 + ~x2, (8)

p2 ≡ pµp
µ = −E2 + ~p2 (9)

and
p · x ≡ pµx

µ = pµxµ = −Et+ ~x · ~p . (10)

• A Lorentz transformation acts on xµ and pµ as

xµ → x′µ = Λµ
νx

ν , pµ → p′µ = Λµ
νp
ν (11)

where the matrix Λµ
ν satisfies the relation

Λµ
ρΛ

ν
λη

ρλ = ηµν (12)

or in a matrix notation
ΛηΛt = η (13)

where the superscript t denotes transpose. We can raise and lower the indices
of Λ by ηµν and ηµν , and equation (13) can also be written as

Λµ
ρΛν

ληρλ = ηµν . (14)

• Under a Lorentz transformation (11), a scalar field transforms as

φ(x)→ φ′(x′) = φ(x) ; (15)

a vector field transforms as

Aµ(x)→ A′µ(x′) = Λµ
νAν(x) ; (16)

a second rank tensor field transforms as

Tµν(x)→ T ′µν(x
′) = Λµ

λΛν
ρTλρ(x) (17)

and so on.

• Infinitesimal Lorentz transformations take the form

Λµ
ν = δµ

ν + ωµ
ν (18)

where
ωµν = −ωνµ, ωµ

ν = ηνλωµλ (19)

are infinitesimal numbers.
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Problem Set 1

1. Review: Quantum harmonic oscillator in the Heisenberg picture (25
points)

Consider the Hamiltonian for a unit mass harmonic oscillator with frequency ω

H =
1

2
(p̂2 + ω2x̂2) . (20)

In the Heisenberg picture p̂(t) and x̂(t) are dynamical variables which evolve
with time. They obey the equal-time commutation relation

[x̂(t), p̂(t)] = i . (21)

Here and below we set ~ = 1.

(a) Obtain the Heisenberg evolution equations for x̂(t) and p̂(t).

(b) Suppose the initial conditions at t = 0 are given by

x̂(0) = x̂, p̂(0) = p̂ (22)

find x̂(t) and p̂(t).

(c) It is convenient to introduce operators â(t) and â†(t) defined by

x̂(t) =

√
1

2ω
(â(t) + â†(t)), p̂(t) = −i

√
ω

2
(â(t)− â†(t)) . (23)

Show that â(t) and â†(t) satisfy equal-time commutation relation

[â(t), â†(t)] = 1 . (24)

(d) Express the Hamiltonian in terms of â(t) and â†(t).

(e) Obtain the Heisenberg equations for â(t) and â†(t).

(f) Suppose the initial conditions at t = 0 are given by

â(0) = â, â†(0) = â† (25)

find â(t) and â†(t).

(g) Express x̂(t), p̂(t) and the Hamiltonian H in terms of â and â†.

2. Review: Lorentz transformations (15 points)
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(a) Prove that the four-dimensional δ-function

δ(4)(p) = δ(p0)δ(p1)δ(p2)δ(p3) (26)

is Lorentz invariant, i.e
δ(4)(p) = δ(4)(p̃) (27)

where p̃µ is a Lorentz transformation of p.

(b) Show that

ω1δ
(3)(~k1 − ~k2) (28)

is Lorentz invariant, i.e.

= ω′1δ
(3)(~k′1 − ~k′2) . (29)

~k1 and ~k2 are respectively the spatial part of four-vectors kµ1 = (ω1, ~k1) and

kµ2 = (ω2, ~k2) which satisfy the on-shell condition

k21 = k22 = −m2 . (30)

k′µ1 = (ω′1,
~k′1) and k′µ2 = (ω′2,

~k′2) are related to kµ1 , k
µ
2 by a same Lorentz

transformation.

(c) For any function f(k) = f(k0, k1, k2, k3) prove that∫
d3~k

(2π)3
1

2ω~k
f(k), ω~k =

√
~k2 +m2 (31)

is Lorentz invariant in the sense that∫
d3~k

(2π)3
1

2ω~k
f(k) =

∫
d3~k

(2π)3
1

2ω~k
f(k̃) (32)

where k̃µ = Λµ
νk

ν is a Lorentz transformation of kµ.

3. A complex scalar field (20 points)

Consider the field theory of a complex value scalar field φ(x) with action

S =

∫
d4x

[
−∂µφ∗∂µφ− V (|φ|2)

]
, |φ|2 = φφ∗ . (33)

One could either consider the real and imaginary parts of φ, or φ and φ∗ as
independent dynamical variables. The latter is more convenient in most situa-
tions.

(a) Check the action (33) is Lorentz invariant (see (15)) and find the equations
of motion.

4



(b) Find the canonical conjugate momenta for φ and φ∗, and the Hamiltonian
H for (33).

(c) The action (33) is invariant under transformation

φ→ eiαφ, φ∗ → e−iαφ∗ (34)

for arbitrary constant α. When α is small, i.e. for an infinitesimal trans-
formation, (34) become

δφ = iαφ, δφ∗ = −iαφ∗ (35)

Use Noether theorem to find the corresponding conserved current jµ and
conserved charge Q.

(d) Use equations of motion of part (a) to verify directly that jµ is indeed
conserved.

4. The energy-momentum tensor for the complex scalar field theory (20
points)

In this problem we work out the energy-momentum tensor of the complex scalar
theory (33).

(a) Under a spacetime translation

xµ → x′µ = xµ + aµ (36)

a scalar field transforms as

φ′(x′) = φ(x) . (37)

Show that the action (33) is invariant under transformation φ(x)→ φ′(x).

(b) Write down the transformation of the scalar fields φ and φ∗ for an in-
finitesimal translation, and use Noether theorem to find the corresponding
conserved currents T µν .

(c) The conserved charge for a time translation

H =

∫
d3xT 00 (38)

should be identified with the total energy of the system, while that for a
spatial translation

P i =

∫
d3xT 0i (39)

should be identified with the total momentum. Thus T µν is referred to as
the energy-momentum tensor. Write down the explicit expressions for H
and P i. Compare H obtained here with the Hamiltonian of problem 3(b).

(d) Use equations of motion of problem 3(a) to verify directly that T µν is
indeed conserved.
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