Quantum Field Theory I (8.323) Spring 2023 Assignment 2

Feb. 14, 2023

- Please remember to put your name at the top of your paper.

Readings

- Peskin \& Schroeder Chap. 2
- Weinberg vol 1 Chap. 1

Notes:

1. Conventions on Fourier transform and the Dirac delta function

- Fourier transform of $\phi(\vec{x}, t)$ is defined as

$$
\begin{equation*}
\tilde{\phi}(\vec{k}, \omega)=\int d t d^{3} \vec{x} e^{i \omega t-i \vec{k} \cdot \vec{x}} \phi(\vec{x}, t) \tag{1}
\end{equation*}
$$

with the inverse transform given by

$$
\begin{equation*}
\phi(\vec{x}, t)=\int \frac{d \omega}{2 \pi} \frac{d^{3} \vec{k}}{(2 \pi)^{3}} e^{-i \omega t+i \vec{k} \cdot \vec{x}} \tilde{\phi}(\vec{k}, \omega) \tag{2}
\end{equation*}
$$

We will often suppress the tilde on $\tilde{\phi}(\vec{k}, \omega)$ and simply write it as $\phi(\vec{k}, \omega)$, distinguishing it from $\phi(\vec{x}, t)$ by their arguments.

- Note

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x e^{i k x}=2 \pi \delta(k) \tag{3}
\end{equation*}
$$

and it higher dimensional generalizations

$$
\begin{equation*}
\int d^{3} \vec{x} e^{i \vec{k} \cdot \vec{x}}=(2 \pi)^{3} \delta^{(3)}(\vec{k}) \tag{4}
\end{equation*}
$$

2. Lorentz transformations

- A Lorentz transformation acts on x^{μ} and p^{μ} as

$$
\begin{equation*}
x^{\mu} \rightarrow x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu}, \quad p^{\mu} \rightarrow p^{\mu}=\Lambda_{\nu}^{\mu} p^{\nu} \tag{5}
\end{equation*}
$$

where the matrix $\Lambda^{\mu}{ }_{\nu}$ satisfies the relation

$$
\begin{equation*}
\Lambda_{\rho}^{\mu} \Lambda_{\lambda}^{\nu} \eta^{\rho \lambda}=\eta^{\mu \nu} \tag{6}
\end{equation*}
$$

or in a matrix notation

$$
\begin{equation*}
\Lambda \eta \Lambda^{t}=\eta \tag{7}
\end{equation*}
$$

where the superscript t denotes transpose. We can raise and lower the indices of Λ by $\eta^{\mu \nu}$ and $\eta_{\mu \nu}$, and equation (7) can also be written as

$$
\begin{equation*}
\Lambda_{\mu}{ }^{\rho} \Lambda_{\nu}{ }^{\lambda} \eta_{\rho \lambda}=\eta_{\mu \nu} \tag{8}
\end{equation*}
$$

- Under a Lorentz transformation (5), a scalar field transforms as

$$
\begin{equation*}
\phi(x) \rightarrow \phi^{\prime}\left(x^{\prime}\right)=\phi(x) ; \tag{9}
\end{equation*}
$$

a vector field transforms as

$$
\begin{equation*}
A_{\mu}(x) \rightarrow A_{\mu}^{\prime}\left(x^{\prime}\right)=\Lambda_{\mu}{ }^{\nu} A_{\nu}(x) ; \tag{10}
\end{equation*}
$$

a second rank tensor field transforms as

$$
\begin{equation*}
T_{\mu \nu}(x) \rightarrow T_{\mu \nu}^{\prime}\left(x^{\prime}\right)=\Lambda_{\mu}{ }^{\lambda} \Lambda_{\nu}{ }^{\rho} T_{\lambda \rho}(x) \tag{11}
\end{equation*}
$$

and so on.

- Infinitesimal Lorentz transformations take the form

$$
\begin{equation*}
\Lambda_{\mu}{ }^{\nu}=\delta_{\mu}^{\nu}+\omega_{\mu}^{\nu} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{\mu \nu}=-\omega_{\nu \mu}, \quad \omega_{\mu}^{\nu}=\eta^{\nu \lambda} \omega_{\mu \lambda} \tag{13}
\end{equation*}
$$

are infinitesimal numbers.
3. All single-particle states used below follow relativistic normalization, i.e.

$$
\begin{equation*}
|k\rangle=\sqrt{2 \omega_{\vec{k}}} a_{\vec{k}}^{\dagger}|0\rangle \text {. } \tag{14}
\end{equation*}
$$

Problem Set 2

1. Problem with relativistic quantum mechanics (20 points)

The Schrodinger equation for a free non-relativistic particle is

$$
\begin{equation*}
i \partial_{t} \psi(\vec{x}, t)=-\frac{1}{2 m} \nabla^{2} \psi(\vec{x}, t) . \tag{15}
\end{equation*}
$$

The generalization of the above equation to a free relativistic particle is the so-called Klein-Gordon equation

$$
\begin{equation*}
\partial_{t}^{2} \psi(\vec{x}, t)-\nabla^{2} \psi(\vec{x}, t)+m^{2} \psi(\vec{x}, t)=0 . \tag{16}
\end{equation*}
$$

We emphasize that in both (15) and (16), $\psi(\vec{x}, t)$ is interpreted as a wave function for dynamical variable $\vec{x}(t)$ rather than a dynamical field.
(a) As a reminder, derive from (15) the continuity equation for the probability

$$
\begin{equation*}
\partial_{t} \rho+\nabla \cdot \vec{J}=0 \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho=|\psi|^{2}, \quad \vec{J}=-\frac{i}{2 m}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right) . \tag{18}
\end{equation*}
$$

(b) Suppose $\psi(\vec{x}, t)$ has the plane wave form, i.e.

$$
\begin{equation*}
\psi(\vec{x}, t) \propto e^{i \vec{k} \cdot \vec{x}} \tag{19}
\end{equation*}
$$

for some real vector \vec{k}, find the solutions to (16).
(c) Show that the Klein-Gordon equation also leads to a continuity equation (17) with now ρ and \vec{J} given by

$$
\begin{equation*}
\rho=\frac{i}{2 m}\left(\psi^{*} \partial_{t} \psi-\psi \partial_{t} \psi^{*}\right), \quad \vec{J}=-\frac{i}{2 m}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right) . \tag{20}
\end{equation*}
$$

(d) Argue that ρ in (20) cannot be interpreted as probability density.

2. Commutation relations of annihilation and creation operators points)

For the real scalar field theory discussed in lecture, i.e.

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2} \tag{21}
\end{equation*}
$$

we showed that the time evolution of quantum operator $\phi(\vec{x}, t)$ is given by

$$
\begin{equation*}
\phi(\vec{x}, t)=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega_{\vec{k}}}}\left(a_{\vec{k}} u_{\vec{k}}(\vec{x}, t)+a_{\vec{k}}^{\dagger} u_{\vec{k}}^{*}(\vec{x}, t)\right) \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{\vec{k}}=\sqrt{\vec{k}^{2}+m^{2}}, \quad u_{\vec{k}}(\vec{x}, t)=e^{-i \omega_{\vec{k}} t+i \vec{k} \cdot \vec{x}} \tag{23}
\end{equation*}
$$

We use $\pi(\vec{x}, t)$ to denote the momentum density conjugate to ϕ. The canonical commutation relations among ϕ and π are

$$
\begin{equation*}
\left[\phi(\vec{x}, t), \phi\left(\vec{x}^{\prime}, t\right)\right]=0=\left[\pi(\vec{x}, t), \pi\left(\vec{x}^{\prime}, t\right)\right], \quad\left[\phi(\vec{x}, t), \pi\left(\vec{x}^{\prime}, t\right)\right]=i \delta^{(3)}\left(\vec{x}-\vec{x}^{\prime}\right) . \tag{24}
\end{equation*}
$$

(a) Show that it is enough to impose (24) at $t=0$. In other words, once we impose them at $t=0$, then the relations at general t are automatically satisfied.
Note: This statement in fact applies not only to $V(\phi)=\frac{1}{2} m^{2} \phi^{2}$, but any potential $V(\phi)$.
(b) Express $a_{\vec{k}}$ and $a_{\vec{k}}^{\dagger}$ in terms of $\phi(\vec{k})$ and $\pi(\vec{k})$, where $\phi(\vec{k})$ and $\pi(\vec{k})$ are Fourier transforms of $\phi(\vec{x}, t=0)$ and $\pi(\vec{x}, t=0)$, i.e.

$$
\begin{equation*}
\phi(\vec{k})=\int d^{3} x e^{-i \vec{k} \cdot \vec{x}} \phi(\vec{x}, t=0) \tag{25}
\end{equation*}
$$

and similarly for π.
(c) Using the expressions you derived in part (b) to deduce the commutations relations

$$
\begin{equation*}
\left[a_{\vec{k}}, a_{\vec{k}^{\prime}}\right], \quad\left[a_{\vec{k}}^{\dagger}, a_{\vec{k}^{\prime}}^{\dagger}\right], \quad\left[a_{\vec{k}}, a_{\vec{k}^{\prime}}^{\dagger}\right] \tag{26}
\end{equation*}
$$

from the commutation relations (24) at $t=0$.

3. Expressing Noether charges in terms of creation and annihilation operators (20 points)

In pset 1 you obtained the conserved charges associated with spacetime translational symmetries for a complex scalar field theory. The results there can be easily converted to the corresponding expressions for a real scalar field theory (21).
(a) Express the Hamiltonian H of (21) in terms of $a_{\vec{k}}$ and $a_{\vec{k}}^{\dagger}$.
(b) Express the conserved charges P^{i} for spatial translations for (21) in terms of $a_{\vec{k}}$ and $a_{\vec{k}}^{\dagger}$.
(c) Starting with

$$
\begin{equation*}
\phi(0,0)=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega_{\vec{k}}}}\left(a_{\vec{k}}+a_{\vec{k}}^{\dagger}\right) \tag{27}
\end{equation*}
$$

show that under the action of translation operators

$$
\begin{equation*}
\phi(\vec{x}, t)=e^{i H t-i P^{i} x^{i}} \phi(0,0) e^{-i H t+i P^{i} x^{i}} \tag{28}
\end{equation*}
$$

Note: This problem becomes trivial if you recall the following formula for a harmonic oscillator

$$
\begin{equation*}
e^{i \alpha N} a e^{-i \alpha N}=e^{-i \alpha} a, \quad N=a^{\dagger} a \tag{29}
\end{equation*}
$$

and α is a constant.

4. Noether charges for Lorentz symmetries of the real scalar field theory (20 points +10 bonus points)

In this problem we work out the conserved current corresponding to Lorentz symmetries of (21).
(a) Consider an infinitesimal Lorentz transformation (12)-(13). Show that (12) satisfies (6) to first order in $\omega_{\mu \nu}$, so does give a Lorentz transformation.
(b) Write down how ϕ transforms under an infinitesimal Lorentz transformation (see (9)) and show that the conserved Noether current for this transformation can be written as

$$
\begin{equation*}
J^{\mu \lambda \nu}=x^{\lambda} T^{\mu \nu}-x^{\nu} T^{\mu \lambda} \tag{30}
\end{equation*}
$$

where $T^{\mu \nu}$ is the conserved energy-momentum tensor which we have already derived in pset 1.
Note: this part does not involve complicated calculations. If you find yourself in a massive calculation, pause, and try to find a simpler approach.
(c) Use the conservation of the energy-momentum tensor to verify that the current (30) is indeed conserved, i.e.

$$
\begin{equation*}
\partial_{\mu} J^{\mu \lambda \nu}=0 . \tag{31}
\end{equation*}
$$

This problem is complete if you finish the above parts. The part below is an instructive exercise, but is calculation heavy. It is given as a bonus problem (10 extra points) for those of you who would like to have more fun.
(d) Consider the conserved charges associated with $J^{\mu \lambda \nu}$

$$
\begin{equation*}
M^{\lambda \nu}=\int d^{3} x J^{0 \lambda \nu} \tag{32}
\end{equation*}
$$

Express the conserved charges $M^{\mu \nu}$ for Lorentz symmetries for (21) in terms of $a_{\vec{k}}$ and $a_{\vec{k}}^{\dagger}$.

MIT OpenCourseWare
https://ocw.mit.edu

8.323 Relativistic Quantum Field Theory I

Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

