
Quantum Field Theory I (8.323) Spring 2023
Assignment 2

Feb. 14, 2023

• Please remember to put your name at the top of your paper.

Readings

• Peskin & Schroeder Chap. 2

• Weinberg vol 1 Chap. 1

Notes:

1. Conventions on Fourier transform and the Dirac delta function

• Fourier transform of φ(~x, t) is defined as

φ̃(~k, ω) =

∫
dtd3~x eiωt−i

~k·~x φ(~x, t) (1)

with the inverse transform given by

φ(~x, t) =

∫
dω

2π

d3~k

(2π)3
e−iωt+i

~k·~x φ̃(~k, ω) . (2)

We will often suppress the tilde on φ̃(~k, ω) and simply write it as φ(~k, ω),
distinguishing it from φ(~x, t) by their arguments.

• Note ∫ ∞
−∞

dx eikx = 2πδ(k), (3)

and it higher dimensional generalizations∫
d3~x ei

~k·~x = (2π)3δ(3)(~k) (4)

2. Lorentz transformations

1



• A Lorentz transformation acts on xµ and pµ as

xµ → x′µ = Λµ
νx

ν , pµ → p′µ = Λµ
νp
ν (5)

where the matrix Λµ
ν satisfies the relation

Λµ
ρΛ

ν
λη

ρλ = ηµν (6)

or in a matrix notation
ΛηΛt = η (7)

where the superscript t denotes transpose. We can raise and lower the
indices of Λ by ηµν and ηµν , and equation (7) can also be written as

Λµ
ρΛν

ληρλ = ηµν . (8)

• Under a Lorentz transformation (5), a scalar field transforms as

φ(x)→ φ′(x′) = φ(x) ; (9)

a vector field transforms as

Aµ(x)→ A′µ(x′) = Λµ
νAν(x) ; (10)

a second rank tensor field transforms as

Tµν(x)→ T ′µν(x
′) = Λµ

λΛν
ρTλρ(x) (11)

and so on.

• Infinitesimal Lorentz transformations take the form

Λµ
ν = δµ

ν + ωµ
ν (12)

where
ωµν = −ωνµ, ωµ

ν = ηνλωµλ (13)

are infinitesimal numbers.

3. All single-particle states used below follow relativistic normalization, i.e.

|k〉 =
√

2ω~ka
†
~k
|0〉 . (14)

Problem Set 2
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1. Problem with relativistic quantum mechanics (20 points)

The Schrodinger equation for a free non-relativistic particle is

i∂tψ(~x, t) = − 1

2m
∇2ψ(~x, t) . (15)

The generalization of the above equation to a free relativistic particle is the
so-called Klein-Gordon equation

∂2t ψ(~x, t)−∇2ψ(~x, t) +m2ψ(~x, t) = 0 . (16)

We emphasize that in both (15) and (16), ψ(~x, t) is interpreted as a wave func-
tion for dynamical variable ~x(t) rather than a dynamical field.

(a) As a reminder, derive from (15) the continuity equation for the probability

∂tρ+∇ · ~J = 0, (17)

where

ρ = |ψ|2, ~J = − i

2m
(ψ∗∇ψ − ψ∇ψ∗) . (18)

(b) Suppose ψ(~x, t) has the plane wave form, i.e.

ψ(~x, t) ∝ ei
~k·~x (19)

for some real vector ~k, find the solutions to (16).

(c) Show that the Klein-Gordon equation also leads to a continuity equa-

tion (17) with now ρ and ~J given by

ρ =
i

2m
(ψ∗∂tψ − ψ∂tψ∗) , ~J = − i

2m
(ψ∗∇ψ − ψ∇ψ∗) . (20)

(d) Argue that ρ in (20) cannot be interpreted as probability density.

2. Commutation relations of annihilation and creation operators (20
points)

For the real scalar field theory discussed in lecture, i.e.

L = −1

2
∂µφ∂

µφ− 1

2
m2φ2 (21)

we showed that the time evolution of quantum operator φ(~x, t) is given by

φ(~x, t) =

∫
d3k

(2π)3
1√
2ω~k

(
a~ku~k(~x, t) + a†~ku

∗
~k
(~x, t)

)
(22)
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where

ω~k =

√
~k2 +m2, u~k(~x, t) = e−iω~kt+i

~k·~x . (23)

We use π(~x, t) to denote the momentum density conjugate to φ. The canonical
commutation relations among φ and π are

[φ(~x, t), φ(~x′, t)] = 0 = [π(~x, t), π(~x′, t)], [φ(~x, t), π(~x′, t)] = iδ(3)(~x−~x′) . (24)

(a) Show that it is enough to impose (24) at t = 0. In other words, once we
impose them at t = 0, then the relations at general t are automatically
satisfied.

Note: This statement in fact applies not only to V (φ) = 1
2
m2φ2, but any

potential V (φ).

(b) Express a~k and a†~k in terms of φ(~k) and π(~k), where φ(~k) and π(~k) are

Fourier transforms of φ(~x, t = 0) and π(~x, t = 0), i.e.

φ(~k) =

∫
d3x e−i

~k·~xφ(~x, t = 0) (25)

and similarly for π.

(c) Using the expressions you derived in part (b) to deduce the commutations
relations

[a~k, a~k′ ], [a†~k, a
†
~k′

], [a~k, a
†
~k′

] (26)

from the commutation relations (24) at t = 0.

3. Expressing Noether charges in terms of creation and annihilation
operators (20 points)

In pset 1 you obtained the conserved charges associated with spacetime trans-
lational symmetries for a complex scalar field theory. The results there can
be easily converted to the corresponding expressions for a real scalar field the-
ory (21).

(a) Express the Hamiltonian H of (21) in terms of a~k and a†~k.

(b) Express the conserved charges P i for spatial translations for (21) in terms
of a~k and a†~k.

(c) Starting with

φ(0, 0) =

∫
d3k

(2π)3
1√
2ω~k

(
a~k + a†~k

)
(27)

show that under the action of translation operators

φ(~x, t) = eiHt−iP
ixiφ(0, 0)e−iHt+iP

ixi . (28)
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Note: This problem becomes trivial if you recall the following formula for
a harmonic oscillator

eiαNae−iαN = e−iαa, N = a†a (29)

and α is a constant.

4. Noether charges for Lorentz symmetries of the real scalar field theory
(20 points + 10 bonus points)

In this problem we work out the conserved current corresponding to Lorentz
symmetries of (21).

(a) Consider an infinitesimal Lorentz transformation (12)–(13). Show that (12)
satisfies (6) to first order in ωµν , so does give a Lorentz transformation.

(b) Write down how φ transforms under an infinitesimal Lorentz transfor-
mation (see (9)) and show that the conserved Noether current for this
transformation can be written as

Jµλν = xλT µν − xνT µλ (30)

where T µν is the conserved energy-momentum tensor which we have al-
ready derived in pset 1.

Note: this part does not involve complicated calculations. If you find your-
self in a massive calculation, pause, and try to find a simpler approach.

(c) Use the conservation of the energy-momentum tensor to verify that the
current (30) is indeed conserved, i.e.

∂µJ
µλν = 0 . (31)

This problem is complete if you finish the above parts. The part
below is an instructive exercise, but is calculation heavy. It is
given as a bonus problem (10 extra points) for those of you who
would like to have more fun.

(d) Consider the conserved charges associated with Jµλν

Mλν =

∫
d3x J0λν (32)

Express the conserved charges Mµν for Lorentz symmetries for (21) in
terms of a~k and a†~k.
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