
Quantum Field Theory I (8.323) Spring 2023
Assignment 4

Feb. 28, 2023

• Please remember to put your name at the top of your paper.

Readings

• Peskin & Schroeder Chap. 4.1 – 4.4

• Peskin & Schroeder Chap. 9.1–9.2

Notes:

1. Here we give the definitions of various functions for a complex scalar field φ:

Wightman function G+(x, x′) =
〈
0|φ(x)φ†(x′)|0

〉
(1)

retarded function GR(x, x′) = θ(t− t′)∆(x, x′) (2)

advanced function GA(x, x′) = −θ(t′ − t)∆(x, x′) (3)

where
∆(x, x′) =

〈
0|[φ(x), φ†(x′)]|0

〉
(4)

and the Feynman function

GF (x, x′) =
〈
0|Tφ(x)φ†(x′)|0

〉
= θ(t− t′)

〈
0|φ(x)φ†(x′)|0

〉
+ θ(t′ − t)

〈
0|φ†(x′)φ(x)|0

〉
. (5)

Note that these definitions may differ from various books by an overall factor i
or minus sign.

2. The unitary quantum operator generating a spacetime translation yµ is written
as

Uy = e−iP
µyµ = eiHy

0−iP iyi , P µ = (H,P i) . (6)

It should be understood that the vacuum energy is already subtracted from H.
Uy acts on creation and annihilation operators as

Uya~kU
†
y = e−iω~ky

0+ikiyia~k = eik·ya~k, Uya
†
~k
U †y = e−ik·ya†~k . (7)
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3. The quantum operator generating a Lorentz transformation is

UΛ = e
i
2
ωµνMµν

(8)

where ωµν = −ωνµ are finite constants. It acts on creation and annihilation
operators as

UΛa~kU
†
Λ = =

√
ωΛ~k

ω~k
aΛ~k (9)

UΛa
†
~k
U †Λ = =

√
ωΛ~k

ω~k
a†

Λ~k
. (10)

Problem Set 4

1. Properties of Wightman and Feynman functions (20 points)

(a) For a free scalar field theory, using (9) and (10), show that

UΛφ(x)U †Λ = φ(Λx) . (11)

(b) Now in all the subsequent parts, let us consider a general interacting theory,
where the mode expansion given in lecture for φ does not apply. But as far
as the system is translational and Lorentz invariant, both (11) and (below
Uy is given by (6))

Uyφ(x)U †y = φ(x+ y) (12)

are valid1. Using (12) to prove that for Wightman function introduced
in (1)

G+(x, x′) = G+(x− x′) . (13)

You need not to show it for other functions, but should realize the same is
true for all two-point functions defined at the beginning of this pset.

(c) Using (11) and the result of part (b) show that one can write G+(x, x′) as

G+(x, x′) = θ(t− t′)G((x− x′)2) + θ(t′ − t)G∗((x− x′)2) (14)

where G(y) is some function which satisfies

G(y) = G∗(y), for y > 0 . (15)

1One can prove this by using the expressions ofH,P i andMµν in terms of φ and πφ and canonical
commutation relations between φ and πφ.
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(d) Now take φ to be real and show that for Feynman function GF

GF (x, x′) = G((x− x′)2) (16)

where function G in the above equation is the same as that in (14).

2. Particle production by an external source (60 points)

This problem is developed from Peskin and Schroeder’s example on p. 32 and
prob. 4.1. It is the simplest example in which the S-matrix can be calculated
exactly.

Consider a free scalar field theory with an external “source” J(x), whose La-
grangian density can be written as

L = −1

2
∂µφ∂

µφ− 1

2
m2φ2 + J(x)φ = L0 + J(x)φ (17)

where L0 is the Lagrangian density for a free scalar and J(x) is a fixed function.
We assume that it has the the following properties

J(t, ~x)→ 0, t→ ±∞, |~x| → ∞ (18)

and its Fourier transform

J(p) =

∫
d4x e−ip·xJ(x) (19)

is analytic in the complex ω plane.

Since J(x) depends on time, the system does not have time translation symme-
try. In particular, the vacuum at past infinity |0,−∞〉 will be different from the
one at future infinity |0,+∞〉. Suppose we start with the vacuum state |0,−∞〉
at t = −∞, in the Heisenberg picture, the system remains in the same state
|0,−∞〉 at all times. At t = +∞, the system is then not in the ground state (as
|0,−∞〉 6= |0,+∞〉), and contains particle excitations. In other words, turning
on a source J(x) has produced particles. Below we will find the relation between
|0,−∞〉 and |0,+∞〉, and calculate the probability for producing particles.

At t = −∞, since J = 0, we have a free theory, and φ can be written as

φ(x) = φin(x) ≡
∫

d3k

(2π)3

1√
2ω~k

[
ain(~k)eik·x + a†in(~k)e−ik·x

]
, t→ −∞

(20)
where

[ain(~k), a†in(~k′)] = (2π)3δ(3)(~k − ~k′) . (21)

We can then define the past vacuum as

ain(~k)|0,−∞〉 = 0, 〈0,−∞|0,−∞〉 = 1 (22)
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and particles (in the past infinity) can be defined by acting a†in on this vacuum.
For example an n-particle state in the past infinity can be written as

|~k1, · · ·~kn,−∞〉 =
√

2ω~k1 · · ·
√

2ω~kna
†
in(~k1) · · · a†in(~kn)|0,−∞〉 (23)

with normalization for a single-particle state〈
~k,−∞|~k′,−∞

〉
= 2ω~k(2π)3δ(3)(~k − ~k′) . (24)

Similarly, at t = +∞, since J = 0, we again have a free theory, and φ can be
written as

φ(x) = φout ≡
∫

d3k

(2π)3

1√
2ω~k

[
aout(~k)eik·x + a†out(~k)e−ik·x

]
, t→ +∞ .

(25)
with the future vacuum defined as

aout(~k)|0,+∞〉 = 0, 〈0,+∞|0,+∞〉 = 1 (26)

and an n-particle state written as

|~k1, · · ·~kn,+∞〉 =
√

2ω~k1 · · ·
√

2ω~kna
†
out(~k1) · · · a†out(~kn)|0,+∞〉 . (27)

Due to the presence of the external source J(x), the past and future annihilation
operators ain and aout are different. φ(t, ~x) with −∞ < t < +∞ interpolates
between (20) and (25).

We consider that the system starts in the vacuum, i.e.

|Ψ〉 = |0,−∞〉 . (28)

(a) For general t, solve the classical equation of motion for (17) and show that
the solution can be written in a form

φ(x) = φ0(x) + i

∫
d4xG(x− x′)J(x′) (29)

where φ0(x) is a solution of the homogeneous equation

(−∂2 +m2)φ0(x) = 0 (30)

and G(x− x′) is a Green function satisfying

(−∂2 +m2)G(x− x′) = −iδ(4)(x− x′) . (31)

We have discussed various types of Green functions, the retarded, ad-
vanced, and Feynman Green functions. Which one we should use here?
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(b) Now consider the quantum theory and promote φ to a quantum operator,
with (29) now an operator equation. Show that φ0 in (29) should be given
by φin introduced in (20).

(c) Evaluate (29) at t = +∞ to find the relation between aout(~k) and ain(~k).

(d) Using (c) show that the expectation value λ for the total number of parti-
cles produced is given by

λ =

∫
d3~k

(2π)3

1

2ω~k
|J(k)|2 . (32)

(e) Show that we can write

aout(~k) = S†ain(~k)S, (33)

with S a unitary operator given by

S ≡ eiB, B =

∫
d4x J(x)φin(x) . (34)

(f) Use (33) to show that
S|0,+∞〉 = |0,−∞〉 (35)

and
S|~k1, · · ·~kn,+∞〉 = |~k1, · · ·~kn,−∞〉 . (36)

Note: The results of this part indicate that S is in fact the S-matrix
operator of the system, i.e. for any free theory state |α〉 and |β〉,

Sβα ≡ 〈β,+∞|α,−∞〉 = 〈β,−∞|S|α,−∞〉 . (37)

(g) In the following parts we will compute the probability of producing n
particles. Before doing that, in this part we develop a technical tool to
make that task easier. Show that we can write S as

S = eiB = eF eGe−
1
2
λ (38)

with

F = i

∫
d3~k

(2π)3

1√
2ω~k

J(k)a†in(k), G = i

∫
d3~k

(2π)3

1√
2ω~k

J(−k)ain(k)

(39)
and λ was introduced in (32).

(h) Use (35) and (38) to find the vacuum to vacuum probability , i.e.

P0 = |〈0,+∞|0,−∞〉|2 . (40)

P0 is the probability of no particle production.
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(i) Use (36) and (38) to show that〈
~k1, · · · , ~kn,+∞|0,−∞

〉
= inJ(k1) · · · J(kn)e−

1
2
λ . (41)

(j) The probability dP of finding exactly n particles with one particle in the

range d3~k1 around ~k1, one particle in the range d3~k2 around ~k2, · · · , one
particle in the range d3~kn around ~kn can be shown to be given by

dP =
∣∣∣〈~k1, · · · , ~kn,+∞|0,−∞

〉∣∣∣2 n∏
i=1

(
d3~ki
(2π)3

1

2ω~ki

)
. (42)

Use (42) to show that the probability of finding exactly n particles is

Pn = e−λ
λn

n!
. (43)

This is Poisson distribution with average particle number λ.

[Note: I am not asking you to derive (42). The equation of course looks
quite intuitive and many of you may be able to guess it. We will discuss
its precise derivation a bit later. ]

Remarks on problem 2:

1. While the setup of this problem is very simple, the notion that in a time-
dependent situation the past and future vacua are inequivalent (and the re-
sulting particle production) is very general and plays very important roles in
cosmology and black holes. In particular, the famous Hawking radiation from
black holes is also a consequence of this.

2. We notice that only the on-shell part of J(k) (i.e. with k0 = ωk) contributes to
the particle production. This is just field theory analog of the resonance effect
for a forced harmonic oscillator.

3. Suppose we turn on the source J very slowly and very slowly turn it off, from
the adiabatic theorem of quantum mechanics, we expect the system to remain
in the vacuum throughout, i.e. there is no particle production. Indeed to see
this in our discussion, in the adiabatic limit J(ω,~k) will be nonzero only for ω
close to zero and there is no on-shell component.
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