
Quantum Field Theory I (8.323) Spring 2023
Assignment 8

Apr. 4, 2023

• Please remember to put your name at the top of your paper.

Readings

• Peskin & Schroeder Chap. 3

Notes: conventions and some useful formulae

1. Conventions of γ matrices:

{γµ, γν} = 2ηµν (1)

and
(γµ)† = γ0γµγ0 . (2)

2. The Dirac equation has the form

(γµ∂µ −m)ψ = 0 (3)

and the action is given by

S = −i
∫
d4x ψ̄(/∂ −m)ψ . (4)

3. A spinor ψ transforms under a Lorentz transformation Λ as

ψ′α(x′) = Sα
β(Λ)ψβ(x), x′µ = Λµ

νx
ν (5)

with
Λµ

ν =
(
e−

i
2
ωλρJ λρ

)µ
ν , S(Λ) = e−

i
2
ωλρΣλρ , (6)

and (
J λρ

)µ
ν = i

(
ηλµδρν − ηρµδλν

)
, Σλρ =

i

4
[γλ, γρ] . (7)

4. Note the relations

[Σλρ, γµ] = −
(
J λρ

)µ
νγ

ν , (8)

S(Λ)γµS−1(Λ) = (Λ−1)µνγ
ν , (9)

S† = −γ0S−1γ0 (10)
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5. us(~k)eik·x and vs(~k)e−ik·x, s = 1, 2 denote respectively a basis of positive and
negative energy solutions to the Dirac equation, with k2 = −m2.

6. We normalize us(~k) and vs(~k) as

ūr(~k)us(~k) = 2miδrs, v̄r(~k)vs(~k) = −2miδrs . (11)

us(~k) and vs(~k) are orthogonal

ūr(~k)vs(~k) = 0, v̄r(~k)us(~k) = 0 . (12)

7. With normalization (11), we have

u†r(
~k)us(~k) = 2Eδrs, v†r(

~k)vs(~k) = 2Eδrs , (13)

and the orthogonal relations (12) can also be written as

u†r(
~k)vs(−~k) = 0, v†r(

~k)us(−~k) = 0 . (14)

These relations are valid for any choices of basis and any representation of
gamma matrices once the normalizations are fixed as in (11).

8. With normalization (11), one can also show that

Λ+(~k) =
∑
s=1,2

us(~k)⊗ ūs(~k) = i(i/k +m), (15)

Λ−(~k) =
∑
s=1,2

vs(~k)⊗ v̄s(~k) = −i(−i/k +m) . (16)

9. An operator solution ψ(x) to the Dirac equation can be expanded as

ψ(x) =

∫
d3~k

(2π)3

1√
2ω~k

[
a

(s)
~k
us(~k)eik·x +

(
c

(s)
~k

)†
vs(~k)e−ik·x

]
. (17)

where the operators a
(s)
~k
, (a

(s)
~k

)† and c
(s)
~k
, (c

(s)
~k

)† satisfy the relations

{a(r)
~k
, (a

(s)
~k′

)†} = {c(r)
~k
, (c

(s)
~k′

)†} = δrs(2π)3δ(3)(~k − ~k′), (18)

{a(r)
~k
, a

(s)
~k′
} = {c(r)

~k
, c

(s)
~k′
} = 0 . (19)

Problem Set 8
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1. Some proofs (21 points)

(a) From the definitions of (6), prove (9).

Hint: use (8).

Note: in lecture we derived the infinitesimal version of (9). Here you need
to prove the finite version.

(b) Prove (10).

(c) From Lorentz transformation of ψ, show that ψ̄ψ and ψ̄γµψ transform
under respectively as a scalar and a vector.

2. Some identities (8 points)

Without using any explicit form of us and vs, show: one of the relations in (13).
In other words, show one of the following

u†r(
~k)us(~k) = −iE

m
ūr(~k)us(~k), v†r(

~k)vs(~k) =
iE

m
v̄r(~k)vs(~k) . (20)

3. Stress tensor and the Hamiltonian for the Dirac theory (21 points)

(a) The Dirac action is translationally invariant. Use the Noether procedure
to construct the corresponding conserved currents Θµν , i.e. the energy-
momentum tensor.

The “charge” density Θ00 for time translation is the energy density. Show
that your Θ00 indeed coincides with the Hamiltonian density H we derived
in lecture, i.e.

Θ00 = H = iψ̄(γi∂i −m)ψ . (21)

(b) Show that using the Dirac equations the Hamiltonian can be written as

H = i

∫
d3xψ†∂tψ (22)

and express H in terms of a
(s)
~k
, (a

(s)
~k

)† and c
(s)
~k
, (c

(s)
~k

)† introduced in (17).

(c) What is the vacuum energy density? (You can leave the answer as an
integral). Discuss the differences with that for a scalar.

4. Angular momentum operators (30 points)

The Dirac action (4) is Lorentz invariant.

(a) Write down an infinitesimal Lorentz transformation for ψ.
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(b) Use the Noether procedure to construct the conserved charges Mµν asso-
ciated with Lorentz transformations, and show that Mµν can be written
as a sum of a “spin” part Sµν and an “orbital angular momentum” part
Lµν , i.e.

Mµν = Sµν + Lµν . (23)

Show that the orbital part Lµν has the same form as that of a scalar, i.e.

Lµν =

∫
d3x

(
xµΘ0ν − xνΘ0µ

)
(24)

where Θµν is the energy-momentum tensor you obtained in 2(a). Show
that the spin part Sµν can be written as

Sµν = −
∫
d3xψ†Σµνψ . (25)

(c) Express the Sµν in terms of a
(s)
~k
, (a

(s)
~k

)† and c
(s)
~k
, (c

(s)
~k

)†.

(d) From the expression you obtained from part (c) for Sij, keep only the
time-independent part, which we will denote as S̃ij. Define

~J2 ≡ 1

2
S̃ijS̃ij . (26)

Show that the one-particle states constructed by acting (a
(s)
~k

)† and (c
(s)
~k

)†

with ~k = 0 (i.e. in the rest frame) on the vacuum are eigenstates of ~J2

with eigenvalues corresponding to that of a spin-1
2

particle.

Note: the reason that we need not worry about the time-dependent part
of Sij is that the part will be canceled by a contribution from Lij. M ij is
conserved: so the time dependent parts of Sij and Lij have to cancel each
other.

Note: the restriction to the rest frame is important here as Sij is not
covariant under a Lorentz transformation. A covariant version of it is
called the Pauli-Lubanski pseudovector, which we will not go into here.
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