Quantum Field Theory I (8.323) Spring 2023
 Assignment 10

Apr. 18, 2023

- Please remember to put your name at the top of your paper.

Readings

- Peskin \& Schroeder Chap. 3
- Peskin \& Schroeder Chap. 9.5
- Peskin \& Schroeder Chap. 4.7

Notes: conventions and some useful formulae

1. Conventions of γ matrices:

$$
\begin{equation*}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\gamma^{\mu}\right)^{\dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0} \tag{2}
\end{equation*}
$$

2. The Dirac equation has the form

$$
\begin{equation*}
\left(\gamma^{\mu} \partial_{\mu}-m\right) \psi=0 \tag{3}
\end{equation*}
$$

and the action is given by

$$
\begin{equation*}
S=-i \int d^{4} x \bar{\psi}(\not \partial-m) \psi . \tag{4}
\end{equation*}
$$

3. $u_{s}(\vec{k}) e^{i k \cdot x}$ and $v_{s}(\vec{k}) e^{-i k \cdot x}, s=1,2$ denote respectively a basis of positive and negative energy solutions to the Dirac equation, with $k^{2}=-m^{2}$.
4. We normalize $u_{s}(\vec{k})$ and $v_{s}(\vec{k})$ as

$$
\begin{equation*}
\bar{u}_{r}(\vec{k}) u_{s}(\vec{k})=2 m i \delta_{r s}, \quad \bar{v}_{r}(\vec{k}) v_{s}(\vec{k})=-2 m i \delta_{r s} \tag{5}
\end{equation*}
$$

$u_{s}(\vec{k})$ and $v_{s}(\vec{k})$ are orthogonal

$$
\begin{equation*}
\bar{u}_{r}(\vec{k}) v_{s}(\vec{k})=0, \quad \bar{v}_{r}(\vec{k}) u_{s}(\vec{k})=0 \tag{6}
\end{equation*}
$$

5. With normalization (5), we have

$$
\begin{equation*}
u_{r}^{\dagger}(\vec{k}) u_{s}(\vec{k})=2 E \delta_{r s}, \quad v_{r}^{\dagger}(\vec{k}) v_{s}(\vec{k})=2 E \delta_{r s} \tag{7}
\end{equation*}
$$

and the orthogonal relations (6) can also be written as

$$
\begin{equation*}
u_{r}^{\dagger}(\vec{k}) v_{s}(-\vec{k})=0, \quad v_{r}^{\dagger}(\vec{k}) u_{s}(-\vec{k})=0 \tag{8}
\end{equation*}
$$

These relations are valid for any choices of basis and any representation of gamma matrices once the normalizations are fixed as in (5).
6. An operator solution $\psi(x)$ to the Dirac equation can be expanded as

$$
\begin{equation*}
\psi(x)=\int \frac{d^{3} \vec{k}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega_{\vec{k}}}}\left[a_{\vec{k}}^{(s)} u_{s}(\vec{k}) e^{i k \cdot x}+\left(c_{\vec{k}}^{(s)}\right)^{\dagger} v_{s}(\vec{k}) e^{-i k \cdot x}\right] \tag{9}
\end{equation*}
$$

where the operators $a_{\vec{k}}^{(s)},\left(a_{\vec{k}}^{(s)}\right)^{\dagger}$ and $c_{\vec{k}}^{(s)},\left(c_{\vec{k}}^{(s)}\right)^{\dagger}$ satisfy the relations

$$
\begin{gather*}
\left\{a_{\vec{k}}^{(r)},\left(a_{\vec{k}^{\prime}}^{(s)}\right)^{\dagger}\right\}=\left\{c_{\vec{k}}^{(r)},\left(c_{\vec{k}^{\prime}}^{(s)}\right)^{\dagger}\right\}=\delta_{r s}(2 \pi)^{3} \delta^{(3)}\left(\vec{k}-\vec{k}^{\prime}\right), \tag{10}\\
\left\{a_{\vec{k}}^{(r)}, a_{\vec{k}^{\prime}}^{(s)}\right\}=\left\{c_{\vec{k}}^{(r)}, c_{\vec{k}^{\prime}}^{(s)}\right\}=0 \tag{11}
\end{gather*}
$$

Problem Set 10

1. Chiral symmetry (15 points)

Consider the Dirac action with $m=0$.
(a) Show that the action is invariant under transformations

$$
\begin{equation*}
\psi \rightarrow e^{i \alpha \gamma^{5}} \psi \tag{12}
\end{equation*}
$$

(b) Construct the Noether current for the above symmetry.
(c) Find how the mass term $m \bar{\psi} \psi$ transforms under (12). Is it invariant?

2. Quantizing the theory of Majorana fermions (25 points)

Consider the theory of Majorana fermions discussed in Pset 9, written in terms of a two-component complex spinor ψ_{L}

$$
\begin{equation*}
\mathcal{L}_{L}=i \psi_{L}^{\dagger} \sigma^{\mu} \partial_{\mu} \psi_{L}-\frac{m}{2}\left(\psi_{L}^{T} \sigma^{2} \psi_{L}+\psi_{L}^{\dagger} \sigma^{2} \psi_{L}^{*}\right) \tag{13}
\end{equation*}
$$

where ψ^{T} denotes the transpose of ψ, and $\sigma^{\mu}=(1, \vec{\sigma})$.
(a) Write down the equal time canonical quantization relations.
(b) Write down the classical equations of motion. In momentum space a general solution can be written as

$$
\begin{equation*}
\psi_{L}(x)=u(p) e^{i p \cdot x}+v(p) e^{-i p \cdot x} \tag{14}
\end{equation*}
$$

Using the above notations, write down a complete basis of solutions in the rest frame (i.e. $\vec{p}=0$).
(c) Verify the following expressions give a complete basis of solutions for general p (below $\bar{\sigma}=(1,-\vec{\sigma})$)

$$
\begin{align*}
u_{s}(p) & =\sqrt{-p \cdot \bar{\sigma}} \zeta_{s} \tag{15}\\
v_{s}(p) & =-\sqrt{-p \cdot \bar{\sigma}} \sigma^{2} \zeta_{s} \tag{16}
\end{align*}
$$

where $\zeta_{s}, s= \pm$ are respectively eigenvectors of σ^{3} with eigenvalues \pm.
(d) Write down the mode expansion for quantum operator ψ_{L}.
(e) Define the vacuum and construct the single-particle states (properly normalized). Discuss the differences between the particles in this theory and those of the Dirac theory.

3. Gaussian integrals for Grassman variables (16 points)

Show that

$$
\begin{equation*}
\int \prod_{i=1}^{N}\left(d \theta_{i}^{*} d \theta_{i}\right) e^{-\theta_{i}^{*} A_{i j} \theta_{j}}=\operatorname{det} A \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\int \prod_{i=1}^{N}\left(d \theta_{i}^{*} d \theta_{i}\right) \theta_{k} \theta_{l}^{*} e^{-\theta_{i}^{*} A_{i j} \theta_{j}}=\operatorname{det} A\left(A^{-1}\right)_{k l} \tag{18}
\end{equation*}
$$

4. Yukawa theory (24 points)

Consider the Yukawa theory discussed in lecture

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}-i \bar{\psi}(\not \partial-m) \psi-g \phi \bar{\psi} \psi . \tag{19}
\end{equation*}
$$

Denote the propagator of a ϕ particle by a dashed line and that of ψ by a solid line (with arrow). We will call p the particle excitation of ψ and \bar{p} and the anti-particle excitation of ψ.
(a) Consider the process

$$
\begin{equation*}
\bar{p}+\bar{p} \rightarrow \bar{p}+\bar{p} \tag{20}
\end{equation*}
$$

Draw the lowest order Feynman diagrams and write down the corresponding scattering amplitude. Take the initial and final states have momenta and ploarizations $\left(p_{1}, s_{1}\right),\left(p_{2}, s_{2}\right)$ and $\left(p_{1}^{\prime}, s_{1}^{\prime}\right),\left(p_{2}^{\prime}, s_{2}^{\prime}\right)$ respectively.
(b) Consider the process

$$
\begin{equation*}
p+\bar{p} \rightarrow \phi+\phi \tag{21}
\end{equation*}
$$

Draw the lowest order Feynman diagrams and write down the corresponding scattering amplitude. Take the initial and final states have momenta and ploarizations $\left(p_{1}, s_{1}\right),\left(p_{2}, s_{2}\right)$ and $p_{1}^{\prime}, p_{2}^{\prime}$ respectively.
(c) Consider the process

$$
\begin{equation*}
p+\phi \rightarrow p+\phi \tag{22}
\end{equation*}
$$

Draw the lowest order Feynman diagrams and write down the corresponding scattering amplitude. Take the initial and final states have momenta and ploarizations $\left(p_{1}, s_{1}\right), p_{2}$ and $\left(p_{1}^{\prime}, s_{1}^{\prime}\right), p_{2}^{\prime}$ respectively.

MIT OpenCourseWare
https://ocw.mit.edu

8.323 Relativistic Quantum Field Theory I

Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

