
Quantum Field Theory I (8.323) Spring 2023
Assignment 11

Apr. 25, 2023

• Please remember to put your name at the top of your paper.

Readings

• Peskin & Schroeder Chap. 9.4

Notes:

Problem Set 11

1. Quantization of Maxwell in the Lorentz gauge: null states and resid-
ual gauge transformations (50 points)

In the Lorentz gauge we consider the action

L = −1

4
FµνF

µν − ξ

2
(∂µA

µ)2 (1)

where ξ is an arbitrary real parameter (and different ξ’s give equivalent theories).
It is convenient to take ξ = 1, in which case

L = −1

2
∂µAν∂

µAν . (2)

The complete set of solutions to operator equations following from (2)

Aµ(x) =

∫
d3k

(2π)3
1√
2ω~k

3∑
α=0

[
E (α)µ a

(α)
~k
eik·x + E (α)∗µ (a

(α)
~k

)†e−ik·x
]

(3)

where ω~k = |~k| and kµ = (|~k|, ~k). E (α)µ are polarization vectors defined by

E (0)µ = (1,~0), E (3)µ =

(
0,
~k

|~k|

)
, E (1,2)µ = (0,~ε1,2), ~ε1,2 · ~k = 0 (4)

where ~ε1,2 are orthogonal unit-norm spatial vectors.
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With canonical commutation relations

[Aµ(t, ~x), πν(t′~x′)] = iδνµδ
(3)(~x− ~x′), πµ = ∂0A

µ (5)

we find that
[a

(α)
~k
, (a

(β)
~k′

)†] = ηαβ(2π)3δ(3)(~k − ~k′) (6)

with all other commutators vanishing. We define the vacuum as

a
(α)
~k
|0〉 = 0, ∀α,~k (7)

and the “big” Hilbert space is defined as

Hbig = {|ψ〉 obtained by acting (a
(α)
~k

)† on |0〉} . (8)

As discussed in lecture, Hbig contains states with negative norms, and thus
unphysical states. Indeed Hbig follows from (2), which by itself is not the
Maxwell theory.

To obtain the Maxwell theory we still need to impose ∂µA
µ = 0 and get rid of

the residual gauge freedom. In this problem we will guide you to do this. We
will see that by imposing ∂µA

µ = 0 we get rid of the negative-norm unphysical
states in Hbig. But this is not enough. We will observe that some states possess
zero norm, which can be attributed to the presence of residual gauge freedom.
By eliminating these null states, we obtain the physical Hilbert space, which
contains only two transverse massless degrees of freedom rather than four.

The enforcement of ∂µA
µ = 0 at the quantum level is subtle. Remember that

in the Coulomb gauge, classically we apply the gauge condition ∇ · ~A = 0
as part of the equations of motion, which becomes an operator equation at
the quantum level. In the Lorentz gauge, classically we only need to impose
“boundary conditions” to ensure that the equation ∂2(∂µA

µ) = 0 has the trivial
solution ∂µA

µ = 0. This implies that, at the quantum level, we cannot enforce
∂µA

µ = 0 as an operator equation (as you will check yourself below). Instead,
we will have to do something weaker, imposing a variant of it as a condition on
the physical states.

(a) Calculate
[A0(t, ~x), ∂µA

µ(t.~x′)] (9)

and from your result explain why we cannot impose ∂µA
µ = 0 as an oper-

ator equation.

(b) We also cannot impose that “physical states” satisfy

∂µA
µ|ψ〉 = 0 (10)
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as ∂µA
µ|0〉 6= 0. We do want to keep |0〉 to be a physical state. So to define

physical states we need a weaker condition. It turns out the condition that
eliminates all negative norm states while keeping the vacuum |0〉 is

∂µA(−)
µ |ψ〉 = 0 (11)

where A
(−)
µ denotes the annihilation part of Aµ. We now impose that

physical states should satisfy (11) and denote the set of physical states in
Hbig to be Hsmall.

Show that there is no negative-norm state in Hsmall.

(c) Show that
〈ψ′|∂µAµ|ψ〉 = 0, ∀|ψ〉, |ψ′〉 ∈ Hsmall, (12)

that is, ∂µA
µ has zero matrix element among states in Hsmall.

(d) Introduce

b
(±)
~k

=
1√
2

(
a3~k ± a

0
~k

)
, (b

(±)
~k

)† =
1√
2

(
a3†~k ± a

0†
~k

)
. (13)

Show that the physical state condition (11) can be written as

b
(+)
~k
|ψ〉 = 0 . (14)

(e) We are not done yet as Hsmall still contain zero-norm states. To see this,
first work out the commutation relations

[b+~k , (b
+
~k′

)†], [b−~k , (b
−
~k′

)†], [b+~k , (b
−
~k′

)†], [b−~k , (b
+
~k′

)†] . (15)

and show that Hsmall can also be described as

Hsmall = {all states obtained by acting (a1~k)
†, (a2~k)

†, (b+~k )† on |0〉} . (16)

In other words, a physical state can have no (b−~k )† excitations.

(f) Show that any state |ψ〉 in Hsmall with nonzero (b+~k )† excitations has zero

norm and its overlap with any state in Hsmall is zero. Such states (which
are called null states) clearly cannot have any physical significance.

(g) Show that any state with nonzero norm then must have the form

|ψ〉 = |ψT 〉+ |χ〉 (17)

where |ψT 〉 contains only excitations of (a1~k)
†, (a2~k)

† (i.e. transverse compo-
nents) and |χ〉 is a null state.

|ψ〉 should be physically equivalent to |ψT 〉 as they differ only by a null
state.
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We can then forget about the null states and define

Hphys = {|ψT 〉} . (18)

Hphys contains only positive-norm states and is identical to that obtained
in the Coulomb gauge.

This concludes the discussion of quantization in the Lorentz gauge. For
the rest the problem we explore a bit further the nature of null states and
their physical interpretation.

(h) Let us call excitations of (b+~k )† null photons. To understand the physical

interpretation of a null photon, let us consider the “wave function” χµ(x)
of the single null photon state

χµ(x) =
〈

0
∣∣Aµ(x)

∣∣~k,+〉, |~k,+〉 =
√

2ω~k(b
+
~k

)†|0〉 . (19)

Note that the above definition of wave function χµ(x) is the straightforward
generalization to vector field of our previous discussion for a scalar field.
Show that χµ(x) can be written as

χµ(x) = ∂µλ(x) (20)

where λ(x) is some function which satisfies the equation for a massless
scalar

∂µ∂
µλ = 0 . (21)

This shows that a null photon can be interpreted as a gauge transformation
from the vacuum.

[Recall that the Lorentz gauge ∂µAµ = 0 leaves residual gauge transforma-
tions

Aµ → Aµ + ∂µλ, ∂µ∂
µλ = 0 . (22)

Thus χµ(x) can be considered as a residual gauge transformation from
Aµ = 0. ]

(i) Show that the conclusion of part (h) holds for any wave packet of a null
photon

|f〉 =

∫
d3~k f(~k)|~k,+〉, (23)

i.e. the wave function for |f〉 again has the form of a residual gauge trans-
formation from Aµ = 0.

2. Casimir effect in one dimension (30 points)

Until now, we have disregarded the vacuum’s zero-point energy as an unobserv-
able (infinite) shift in the energy scale. However, as Casimir demonstrated in
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1948, differences in vacuum zero-point energies are, however, observable. This
phenomenon is known as the Casimir effect. A simplest example of the Casimir
effect is a small attractive force between two close parallel conducting plates,
due to quantum vacuum fluctuations of the electromagnetic field. The force
is caused by change in vacuum energy of the electromagnetic field that results
from the boundary conditions imposed by the plates.

In this problem we will explore the Casimir effect. For technical simplicity, we
will consider a toy version of the effect, which captures all the essential physics.
As we have learned, after quantization the electromagnetic field has the same
number of degrees of freedom as two massless scalar fields. So we will consider a
massless scalar field instead of the Maxwell theory. Also instead of three spatial
dimensions we consider one spatial dimension.

Consider a free, massless, real scalar field φ in one spatial dimension, i.e.

S = −1

2

∫
dxdt ∂µφ∂

µφ . (24)

The vacuum of the system has an infinite zero-point energy. Let us denote it
by E0. Now imagine we put two “plates” at x = 0 and x = a such that φ is
required to vanish at the location of the plates,1 i.e.

φ(x = 0, t) = φ(x = a, t) = 0 . (25)

Adding plates which imposes additional boundary conditions on φ disturbs the
vacuum, and results in a different zero-point energy E(a).

Even though both E0 and E(a) are infinite, their difference turns out to be
finite and physically meaningful. In fact the difference

U(a) = E(a)− E0 (26)

can be considered as the potential energy between the two plates. Changing a
modifies the potential energy and results in a force between the plates which
can be measured experimentally!

In this problem I will guide you to calculate U(a). As you learned in calculus,
taking the differences between infinities is a highly dangerous thing to do. One
can in principle get any answer. So we will need to be very careful.

Both E0 and Ea have two sources of infinities, one from the infinite volume, the
other from there are infinite number of local degrees of freedom. It is convenient
to separate these two infinities by putting the system in a box with finite size
L� a. We will take L to infinity at the end of the calculation. More explicitly,
we require φ to satisfy a periodic boundary condition

φ(x, t) = φ(x+ L, t) (27)

1In real-life Casimir effects, the plates are simply conducting plates.
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i.e. putting the system on a circle of size L.

(a) In the vacuum (i.e. before putting the plates), write down the mode ex-
pansion for φ and calculate its zero-point energy E0. Your answer should
have the form

E0 =
1

2

∑
n

ωn (28)

where ωn is the energy for each mode. You should specify both ωn and the
range of summation.

(b) Adding the plates separates the system into two segments, one has size a,
the other has size L − a. In both segments one has Dirichlet boundary
conditions (25) at two ends. (Remember the system is on a circle.) So it
is enough to work out the story for one of them. Find the mode expansion
for φ in the region [0, a] and zero-point energy ε(a). Again your answer
should have the form

ε(a) =
1

2

∑
n

ω̃n (29)

and you should specify both ω̃n and the range of summation. The total
zero-point energy of the system in the presence of the plates is thus

E(a) = ε(a) + ε(L− a) . (30)

(c) Both sums (28) and (30) are divergent. There is not much sense in taking
the difference between them. To take the difference we will first make them
finite. We will do this by introducing a “UV cutoff” Λ, i.e. change the
sums to2

E0 =
1

2

∑
n

ωne
−ωn

Λ (31)

and

ε(a) =
1

2

∑
n

ω̃ne
− ω̃n

Λ . (32)

Clearly taking the limit Λ→∞ inside the sum we recover (28) and (29).
Now evaluate (31) and (32) with a finite Λ.

(d) Expand the answers you get in part (c) in the limit Λ→∞. You will find
they become divergent. Keep terms which are divergent and finite, but
throw away all terms which go to zero in the limit (i.e. throw away all
terms with a negative power of Λ).

2Note that by introducing Λ, we suppress the contributions from “high” energy modes with
ωn, ω̃n � Λ.
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(e) From your answers in part (d), find

U(a) = E(a)− E0 . (33)

You should find U(a) is finite in the limit Λ → ∞. Now take the limit
L→∞ in U(a), and find the force between the plates in the L→∞ limit.
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