
8.323 Problem Set 1 Solutions

February 15, 2023

Question 1: Quantum harmonic oscillator in the Heisenberg picture (25 points)
Consider the Hamiltonian for a unit mass harmonic oscillator with frequency ω,

H =
1

2
(p̂2 + ω2x̂2)

In the Heisenberg picture p̂(t) and x̂(t) are dynamical variables which evolve with time. They obey the
equal-time commutation relation

[x̂(t), p̂(t)] = i

Here and below we set ℏ = 1.

(a) Obtain the Heisenberg evolution equations for x̂(t) and p̂(t).
We use Heisenberg’s equations of motion for x̂(t) and p̂(t):

dx̂(t)

dt
= i[H, x̂(t)]

dp̂(t)

dt
= i[H, p̂(t)]

The right hand sides can be computed using H = 1
2(p̂

2 + ω2x̂2), the commutator [x̂, p̂] = i, and the
Heisenberg time evolution O(t) = eiHtOe−iHt. For instance:

[H, x̂(t)] = [H, eiHtx̂e−iHt] = eiHt[H, x̂]e−iHt = −ieiHtp̂e−iHt = −ip̂(t)

Hence, we have:

dx̂(t)

dt
= p̂(t)

dp̂(t)

dt
= −ω2x̂(t)

(b) Suppose the initial conditions at t = 0 are given by

x̂(0) = x̂ p̂(0) = p̂

Find x̂(t) and p̂(t).
We can decouple the system by converting to second order equations:

¨̂x = −ω2x̂(t) ¨̂p(t) = −ω2p̂(t)

Solving with the initial conditions x̂(0) = x̂ and p̂(0) = p̂, we find

x̂(t) = x̂ cosωt+
1

ω
p̂ sinωt p̂(t) = p̂ cosωt− ωx̂ sinωt
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(c) It is convenient to introduce operators â(t) and â†(t) defined by:

x̂(t) =

√
1

2ω
(â(t) + â†(t)), p̂(t) = −i

√
ω

2
(â(t)− â†(t))

Show that â(t) and â†(t) satisfy the equal-time commutation relation

[â(t), â†(t)] = 1

We solve for â(t) and â†(t) in terms of x̂(t) and p̂(t):

â(t) =

√
ω

2
x̂(t) + i

√
1

2ω
p̂(t), â†(t) =

√
ω

2
x̂(t)− i

√
1

2ω
p̂(t)

Using the commutation relations between position and momentum operators, we have

[â(t), â†(t)] = − i

2
[x̂(t), p̂(t)] +

i

2
[p̂(t), x̂(t)] = 1

(d) Express the Hamiltonian in terms of â(t) and â†(t).

H = H(t) = eiHtHe−iHt =
1

2
(p̂(t)2 + ω2x̂(t)2)

=
ω

4
(−(â(t)− â†(t))2 + (â(t)− â†(t))2) =

ω

2
(â(t)â†(t) + â†(t)â(t))

= ω

(
â†(t)â(t) +

1

2

)
= ω

(
N(t) +

1

2

)
where in the last equality we define the number operator, N(t) = â†(t)â(t).

(e) Obtain the Heisenberg equations for â(t) and â†(t).
Using the results in parts (c) and (d), we have

dâ(t)

dt
= i[H, â(t)] = iω[â†(t)â(t), â(t)] = −iωâ(t)

dâ†(t)

dt
= i[H, â†(t)] = iω[â†(t)â(t), â†(t)] = iωâ†(t)

(f) Suppose the initial conditions at t = 0 are given by

â(0) = â, â†(0) = â†

Find â(t) and â†(t).
The equations in (e) are decoupled, and first-order linear. We immediately have

â(t) = âe−iωt, â†(t) = â†eiωt

(g) Express x̂(t), p̂(t), and the Hamiltonian H in terms of â and â†.
We substitute the expressions obtained in (f) into parts (c) and (d).

x̂(t) =

√
1

2ω
(âe−iωt + â†eiωt)

p̂(t) = −i

√
ω

2
(âe−iωt − â†eiωt)

H(t) = H = ω(â†â+
1

2
)
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Question 2: Lorentz transformations (15 points)
(a) Probe that the 4-dimensional δ-function

δ(4)(p) = δ(p0)δ(p1)δ(p2)δ(p3)

is Lorentz invariant, i.e.

δ(4)(p) = δ(4)(p̃)

where p̃µ is a Lorentz transformation of pµ.
We express the δ-function in integral form, and use that p · x is a Lorentz scalar, i.e. Λp · Λx = p · x.

δ(4)(p) =
1

(2π)4

∫
d4xeip·x =

1

(2π)4

∫
d4xeiΛp·Λx

Now we make the change of variables x̃ = Λx. Note that d4x̃ = d4x. To see this we use ΛT ηΛ = η, which
implies 1 = det(ΛT ) det(Λ) = (detΛ)2. Hence, the Jacobian J = | detΛ| = 1. One thus has

δ(4)(p) =
1

(2π)4

∫
d4x̃eiΛp·x̃ =

1

(2π)4

∫
d4xeiΛp·x = δ(4)(Λp)

(b) Show that

ω1δ
(3)(k⃗1 − k⃗2)

is Lorentz invariant, i.e.

ω1δ
(3)(k⃗1 − k⃗2) = ω′

1δ
(3)(k⃗′1 − k⃗′2)

Here k⃗1 and k⃗2 are respectively the spatial part of four-vectors kµ1 = (ω1, k⃗1) and kµ2 = (ω2, k⃗2) which
satisfy the on-shell condition

k21 + k22 = −m2

and k′µ1 = (ω′
1, k⃗

′
1), k

′µ
2 = (ω′

2, k⃗
′
2) are related to kµ1 , k

µ
2 by the same Lorentz transformation.

We consider the expression δ(k2 + m2) which imposes the mass-shell constraint. We can simplify this

using the δ-function identity δ(f(x)) =
∑

xi s.t. f(xi)=0

1

|f ′(xi)|
δ(x− xi).

δ(k2 +m2) = δ(−k20 + k⃗2 +m2) =
1

2|ω
k⃗
|
(
δ(k0 − |ω

k⃗
|) + δ(k0 + |ω

k⃗
|)
)

(1)

We will assume ω
k⃗1
, ω

k⃗2
> 0, as is the case for physical 4-momenta.

We can pick out the k01 = ω
k⃗1

enforcing δ-function in (1) by multiplying both sides by θ(ω
k⃗1
).

θ(ω
k⃗1
)δ(k21 +m2) =

1

2ω
k⃗1

δ(k01 − ω
k⃗1
)θ(ω

k⃗1
) =

1

2ω
k⃗1

δ(k01 − ω
k⃗1
) (2)

Now we multiply both sides by δ(3)(k⃗1 − k⃗2):

θ(ω
k⃗1
)δ(k21 +m2) · 2ω

k⃗1
δ(3)(k⃗1 − k⃗2) = δ(k01 − ω

k⃗1
)δ(3)(k⃗1 − k⃗2)

= δ(k01 − ω
k⃗2
)δ(3)(k⃗1 − k⃗2)

= δ(k01 − k02)δ
(3)(k⃗1 − k⃗2)

θ(ω
k⃗1
)δ(k21 +m2) · 2ω

k⃗1
δ(3)(k⃗1 − k⃗2) = δ(4)(kµ1 − kµ2 ) (3)
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In the second equality, we use that the δ(3)(k⃗1 − k⃗2) allows us to replace ω
k⃗1

with ω
k⃗2
. For this step, it is

crucial that sign(ω
k⃗1
) = sign(ω

k⃗2
), which is true since both are positive.

Finally, let us study (3). The right-hand side is Lorentz invariant by part (a). On the left-hand side,
δ(k21 +m2) is Lorentz invariant since k21 is a Lorentz scalar, and θ(ω

k⃗1
) is Lorentz invariant because the

energy of a particle does not change under a (proper, orthochronous) Lorentz transformation. It then
follows that ω

k⃗1
δ(3)(k⃗1 − k⃗2) is Lorentz invariant.

(c) For any function f(k) = f(k0, k1, k2, k3), prove that∫
d3k⃗

(2π)3
1

2ω
k⃗

f(k), ω
k⃗
=

√
k⃗2 +m2

is Lorentz invariant, in the sense that∫
d3k⃗

(2π)3
1

2ω
k⃗

f(k) =

∫
d3k⃗

(2π)3
1

2ω
k⃗

f(k̃)

where k̃µ = Λµ
νk

ν is a Lorentz transformation of kµ.
Since the momentum is on the mass-shell, we write f(k) = f(ω

k⃗
, k⃗).

By introducing another δ-function, we may write this expression as a integral over 4-dimensions:∫
d3k⃗

(2π)3
1

2ω
k⃗

f(k) =

∫
d3k⃗

(2π)3
1

2ω
k⃗

f(ω
k⃗
, k⃗) =

1

(2π)3

∫
d4k

1

2ω
k⃗

δ(k0 − ω
k⃗
)f(k0, k⃗)

=
1

(2π)3

∫
d4k θ(ω

k⃗
)δ(k2 +m2)f(kµ) (4)

where in the last equality we have used (2).
Now we make a change of variables, k = Λk′, for Λ an arbitrary (proper, orthochronous) Lorentz trans-
formation. In parts (a)-(b), we showed that d4k = d4k′, θ(ω

k⃗
) = θ(ω

k⃗′), and δ(k2 +m2) = δ(k′2 +m2).
Hence,

1

(2π)3

∫
d4k θ(ω

k⃗
)δ(k2 +m2)f(kµ) =

1

(2π)3

∫
d4k′ θ(ω

k⃗′)δ(k
′2 +m2)f((Λk′)µ)

=

∫
d3k⃗

(2π)3
1

2ω
k⃗

f(Λk)

where the last equality is obtained using the reverse sequence of operations that led to (4).
Putting everything together, we have the desired result,∫

d3k⃗

(2π)3
1

2ω
k⃗

f(k) =

∫
d3k⃗

(2π)3
1

2ω
k⃗

f(Λk)
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Question 3: A complex scalar field (20 points)
Consider the field theory of a complex valued scalar field ϕ(x) with action

S =

∫
d4x

(
− ∂µϕ

∗∂µϕ− V (|ϕ|2)
)
, |ϕ|2 = ϕ∗ϕ

One could either consider the real and imaginary parts of ϕ, or ϕ and ϕ∗ as independent dynamical
variables. The latter is more convenient in most situations.
(a) Check that the action is Lorentz invariant, and find the equations of motion.
A Lorentz transformation acts as ϕ → ϕ′, such that ϕ′(x) = ϕ(Λ−1x). The action transforms as:

S → S′ =

∫
d4x

(
− ∂µϕ

′∗(x)∂µϕ′(x)− V (|ϕ′(x)|2)
)

=

∫
d4x

(
− ∂µϕ

∗(Λ−1x)∂µϕ(Λ−1x)− V (|ϕ(Λ−1x)|2)
)

Now we make the change of variable x′ = Λ−1x. We showed in 2(a) that d4x = d4x′. Furthermore, by
the chain rule we have ∂µ = (Λ−1)µ

ν∂′
ν . Here ∂µ and ∂′

µ denote differentiation with respect to x and x′.

S′ =

∫
d4x′

(
− (Λ−1)µ

ν∂′
νϕ

∗(x′) (Λ−1)µρ∂
′ρϕ(x′)− V (|ϕ(x′)|2

)
=

∫
d4x′

(
− δνρ∂

′
νϕ

∗(x′)∂′ρϕ(x′)− V (|ϕ(x′)|2
)

=

∫
d4x′

(
− ∂′

νϕ
∗(x′)∂′νϕ(x′)− V (|ϕ(x′)|2

)
= S

where in the second line we use

(Λ−1)µ
ν(Λ−1)µρ = ((Λ−1)T )νµ(Λ

−1)µρ = (Λ)νµ(Λ
−1)µρ = δνρ

To find the equations of motion, we use the Euler-Lagrange equations, treating ϕ and ϕ∗ as independent:

∂µ
∂L

∂(∂µϕ)
=

∂L
∂ϕ

, ∂µ
∂L

∂(∂µϕ∗)
=

∂L
∂ϕ∗

The left-hand side can be confusing to evaluate due to the contracted indices, so we do one calculation
very explicitly:

∂µ
∂L

∂(∂µϕ)
= ∂µ

[
∂

∂(∂µϕ)
(−∂νϕ

∗∂νϕ)

]
= ∂µ[−∂νϕ

∗δνµ] = −∂2ϕ∗

Hence, the equations of motion are

∂2ϕ∗ − V ′(|ϕ|2)ϕ∗ = 0, ∂2ϕ− V ′(|ϕ|2)ϕ = 0

Note that these are conjugate equations, as expected.

(b) Find the canonical conjugate momenta for ϕ and ϕ∗, and the Hamiltonian H.
We write the Lagrangian density as

L = ∂tϕ
∗∂tϕ− ∇⃗ϕ∗ · ∇⃗ϕ− V (|ϕ|2)

The conjugate momenta are thus

π :=
∂L

∂(∂tϕ)
= ∂tϕ

∗, π∗ :=
∂L

∂(∂tϕ∗)
= ∂tϕ
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The Hamiltonian is given by

H =

∫
d3x(π∂tϕ+ π∗∂tϕ− L) =

∫
d3x(π∗π + ∇⃗ϕ∗ · ∇⃗ϕ+ V (|ϕ|2))

(c) The action is invariant under the transformation

ϕ → eiαϕ, ϕ∗ → e−iαϕ∗

for arbitrary constant α. When α is small, i.e. for an infinitesimal transformation, this becomes

δϕ = iαϕ, δϕ∗ = −iαϕ∗

Use Noether’s theorem to find the corresponding conserved current jµ and conserved charge Q.
By Noether’s theorem, the conserved current is given by

jµ =
∂L

∂(∂µΦa)
δΦa −Fµ, δL = ∂µFµ

In this case, δϕ = iαϕ, δϕ∗ = −iαϕ∗, and δL = 0. We find

jµ = −∂µϕ∗(iαϕ)− ∂µϕ(−iαϕ∗) = iα(ϕ∗∂µϕ− ϕ∂µϕ∗)

One may remove the proportionality constant if desired, to get

jµ = ϕ∗∂µϕ− ϕ∂µϕ∗

The corresponding charge is then

Q =

∫
d3xj0 =

∫
d3x(ϕ∗∂tϕ− ϕ∂tϕ

∗)

(d) Use the equations of motion from part (a) to verify directly that jµ is conserved.
We compute:

∂µj
µ = ∂µ(ϕ

∗∂µϕ− ϕ∂µϕ∗) = ϕ∗∂2ϕ− ϕ∂2ϕ∗

= V ′(|ϕ|2)ϕ∗ϕ− V ′(|ϕ|2)ϕ∗ϕ = 0

where in the second line we use the equations of motion from part (a).
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Question 4: The energy-momentum tensor (20 points)
In this problem we work out the energy-momentum tensor of the complex scalar theory in Question 3.
(a) Under a spacetime translation

xµ → x′µ = xµ + aµ

a scalar field transforms as

ϕ′(x′) = ϕ(x)

Show that the action is invariant under the transformation ϕ(x) → ϕ′(x).
Under the transformation, the scalar field satisfies ϕ′(x) = ϕ(x− a). The action transforms as:

S → S′ =

∫
d4x

(
− ∂µϕ

′∗(x)∂µϕ′(x)− V (|ϕ′(x)|2)
)

=

∫
d4x

(
− ∂µϕ

∗(x− a)∂µϕ(x− a)− V (|ϕ(x− a)|2)
)

=

∫
d4x

(
− ∂µϕ

∗(x)∂µϕ(x)− V (|ϕ(x)|2)
)
= S

where in the last line we change variables from xµ → xµ + aµ, which does not change the integration
measure.

(b) Write down the transformation of the scalar fields ϕ and ϕ∗ for an infinitesimal translation, and use
Noether’s theorem to find the corresponding conserved currents Tµν .

An infinitesimal translation acts on the fields as:

δϕ = ϕ′(x)− ϕ(x) = ϕ(x− a)− ϕ(x) = −aµ∂µϕ(x)

δϕ∗ = ϕ′∗(x)− ϕ∗(x) = ϕ∗(x− a)− ϕ∗(x) = −aµ∂µϕ
∗(x)

We also need the change in the Lagrangian density under translations:

δL = L′ − L = −∂ν(ϕ
∗(x)− aµ∂µϕ

∗(x)) ∂ν(ϕ(x)− aµ∂µϕ(x))

− V
(
(ϕ∗(x)− aµ∂µϕ

∗(x))(ϕ(x)− aµ∂µϕ(x))
)
− L

= aµ(∂ν∂µϕ
∗(x)∂νϕ(x) + ∂νϕ

∗(x)∂ν∂µϕ(x)) + aµV ′(ϕ∗ϕ)
(
∂µϕ

∗ϕ+ ϕ∗∂µϕ
)
+O(aµaν)

= −aµ∂µL = aµ∂ν(−ηµνL) := (aµ∂ν)Fµν

The translations are parameterized by a 4-vector aµ, and we have a Noether current (itself a 4-vector) for
each. Hence, we can encode the conserved currents from translations into a rank-2 tensor, Tµν . In the
following, we let the first index pick out the direction of the translation aµ.

The Noether current is

Tµν := (jµ)ν =
∂L

∂(∂νϕ)
(δϕ)µ +

∂L
∂(∂νϕ∗)

(δϕ∗)µ −Fµν

= −∂νϕ∗(−∂µϕ)− ∂νϕ(−∂µϕ∗) + ηµνL
= ∂µϕ∗∂νϕ+ ∂νϕ∗∂µϕ− ηµν

(
∂ρϕ

∗∂ρϕ+ V (|ϕ|2)
)

(c) The conserved charge for a time translation

H =

∫
d3xT 00
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should be identified with the total energy of the system, while that for a spatial translation

P i =

∫
d3xT 0i

is identified with the total momentum. Thus Tµν is referred to as the energy-momentum tensor.
Write down the explict expressions for H and P i. Compare H obtained here with the Hamiltonian in
problem 3(b).

We compute:

H =

∫
d3xT 00 =

∫
d3x

(
2∂tϕ∗∂tϕ+ (−∂tϕ∗∂tϕ+ ∇⃗ϕ∗ · ∇⃗ϕ+ V (|ϕ|2))

)
=

∫
d3x

(
∂tϕ

∗∂tϕ+ ∇⃗ϕ∗ · ∇⃗ϕ+ V (|ϕ|2))
)

P i =

∫
d3xT 0i =

∫
d3x

(
∂tϕ∗∂iϕ+ ∂iϕ∗∂tϕ

)
= −

∫
d3x (∂tϕ

∗∂iϕ+ ∂iϕ
∗∂tϕ)

The expression for the Hamiltonian is equal to the Hamiltonian obtained in problem 3(b).

(d) Use the equations of motion of problem 3(a) to verify directly that Tµν is conserved.
Recall that the first index of Tµν picks out the direction of the translation aµ, so formally Noether
conservation should tell us ∂νT

µν = 0. However, from part (c) it can be seen that Tµν is symmetric, so
we can contract the derivative with respect to either index.

We compute:

∂µT
µν = ∂µ(∂

µϕ∗∂νϕ+ ∂νϕ∗∂µϕ)− ∂ν(∂ρϕ
∗∂ρϕ)− ∂νV (|ϕ|2)

= ∂2ϕ∗∂νϕ+ ∂νϕ∗∂2ϕ− ∂νV (|ϕ|2)
= ϕ∗∂νϕ V ′(|ϕ|2) + ϕ∂νϕ∗ V ′(|ϕ|2)− ϕ∗∂νϕ V ′(|ϕ|2)− ϕ∂νϕ∗ V ′(|ϕ|2) = 0

where we use the equations of motion in the 3rd equality. Thus the Noether currents are conserved.
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