8.323 Problem Set 1 Solutions

February 15, 2023

Question 1: Quantum harmonic oscillator in the Heisenberg picture (25 points) Consider the Hamiltonian for a unit mass harmonic oscillator with frequency ω ,

$$H = \frac{1}{2}(\hat{p}^2 + \omega^2 \hat{x}^2)$$

In the Heisenberg picture $\hat{p}(t)$ and $\hat{x}(t)$ are dynamical variables which evolve with time. They obey the equal-time commutation relation

$$[\hat{x}(t), \hat{p}(t)] = i$$

Here and below we set $\hbar = 1$.

(a) Obtain the Heisenberg evolution equations for $\hat{x}(t)$ and $\hat{p}(t)$. We use Heisenberg's equations of motion for $\hat{x}(t)$ and $\hat{p}(t)$:

$$\frac{d\hat{x}(t)}{dt} = i[H, \hat{x}(t)] \qquad \qquad \frac{d\hat{p}(t)}{dt} = i[H, \hat{p}(t)]$$

The right hand sides can be computed using $H = \frac{1}{2}(\hat{p}^2 + \omega^2 \hat{x}^2)$, the commutator $[\hat{x}, \hat{p}] = i$, and the Heisenberg time evolution $\mathcal{O}(t) = e^{iHt}\mathcal{O}e^{-iHt}$. For instance:

$$[H, \hat{x}(t)] = [H, e^{iHt}\hat{x}e^{-iHt}] = e^{iHt}[H, \hat{x}]e^{-iHt} = -ie^{iHt}\hat{p}e^{-iHt} = -i\hat{p}(t)$$

Hence, we have:

$$\frac{d\hat{x}(t)}{dt} = \hat{p}(t) \qquad \qquad \frac{d\hat{p}(t)}{dt} = -\omega^2 \hat{x}(t)$$

(b) Suppose the initial conditions at t = 0 are given by

$$\hat{x}(0) = \hat{x} \qquad \qquad \hat{p}(0) = \hat{p}$$

Find $\hat{x}(t)$ and $\hat{p}(t)$.

We can decouple the system by converting to second order equations:

$$\ddot{\hat{x}} = -\omega^2 \hat{x}(t) \qquad \qquad \ddot{\hat{p}}(t) = -\omega^2 \hat{p}(t)$$

Solving with the initial conditions $\hat{x}(0) = \hat{x}$ and $\hat{p}(0) = \hat{p}$, we find

$$\hat{x}(t) = \hat{x}\cos\omega t + \frac{1}{\omega}\hat{p}\sin\omega t$$
 $\hat{p}(t) = \hat{p}\cos\omega t - \omega\hat{x}\sin\omega t$

(c) It is convenient to introduce operators $\hat{a}(t)$ and $\hat{a}^{\dagger}(t)$ defined by:

$$\hat{x}(t) = \sqrt{\frac{1}{2\omega}}(\hat{a}(t) + \hat{a}^{\dagger}(t)), \qquad \hat{p}(t) = -i\sqrt{\frac{\omega}{2}}(\hat{a}(t) - \hat{a}^{\dagger}(t))$$

Show that $\hat{a}(t)$ and $\hat{a}^{\dagger}(t)$ satisfy the equal-time commutation relation

$$[\hat{a}(t), \hat{a}^{\dagger}(t)] = 1$$

We solve for $\hat{a}(t)$ and $\hat{a}^{\dagger}(t)$ in terms of $\hat{x}(t)$ and $\hat{p}(t)$:

$$\hat{a}(t) = \sqrt{\frac{\omega}{2}}\hat{x}(t) + i\sqrt{\frac{1}{2\omega}}\hat{p}(t), \qquad \qquad \hat{a}^{\dagger}(t) = \sqrt{\frac{\omega}{2}}\hat{x}(t) - i\sqrt{\frac{1}{2\omega}}\hat{p}(t)$$

Using the commutation relations between position and momentum operators, we have

$$[\hat{a}(t), \hat{a}^{\dagger}(t)] = -\frac{i}{2}[\hat{x}(t), \hat{p}(t)] + \frac{i}{2}[\hat{p}(t), \hat{x}(t)] = 1$$

(d) Express the Hamiltonian in terms of $\hat{a}(t)$ and $\hat{a}^{\dagger}(t)$.

$$H = H(t) = e^{iHt} H e^{-iHt} = \frac{1}{2} (\hat{p}(t)^2 + \omega^2 \hat{x}(t)^2)$$

= $\frac{\omega}{4} (-(\hat{a}(t) - \hat{a}^{\dagger}(t))^2 + (\hat{a}(t) - \hat{a}^{\dagger}(t))^2) = \frac{\omega}{2} (\hat{a}(t)\hat{a}^{\dagger}(t) + \hat{a}^{\dagger}(t)\hat{a}(t))$
= $\omega \left(\hat{a}^{\dagger}(t)\hat{a}(t) + \frac{1}{2} \right) = \omega \left(N(t) + \frac{1}{2} \right)$

where in the last equality we define the number operator, $N(t) = \hat{a}^{\dagger}(t)\hat{a}(t)$.

(e) Obtain the Heisenberg equations for $\hat{a}(t)$ and $\hat{a}^{\dagger}(t)$. Using the results in parts (c) and (d), we have

$$\frac{d\hat{a}(t)}{dt} = i[H, \hat{a}(t)] = i\omega[\hat{a}^{\dagger}(t)\hat{a}(t), \hat{a}(t)] = -i\omega\hat{a}(t)$$
$$\frac{d\hat{a}^{\dagger}(t)}{dt} = i[H, \hat{a}^{\dagger}(t)] = i\omega[\hat{a}^{\dagger}(t)\hat{a}(t), \hat{a}^{\dagger}(t)] = i\omega\hat{a}^{\dagger}(t)$$

(f) Suppose the initial conditions at t = 0 are given by

$$\hat{a}(0) = \hat{a}, \qquad \qquad \hat{a}^{\dagger}(0) = \hat{a}^{\dagger}$$

Find $\hat{a}(t)$ and $\hat{a}^{\dagger}(t)$.

The equations in (e) are decoupled, and first-order linear. We immediately have

$$\hat{a}(t) = \hat{a}e^{-i\omega t}, \qquad \qquad \hat{a}^{\dagger}(t) = \hat{a}^{\dagger}e^{i\omega t}$$

(g) Express $\hat{x}(t)$, $\hat{p}(t)$, and the Hamiltonian H in terms of \hat{a} and \hat{a}^{\dagger} . We substitute the expressions obtained in (f) into parts (c) and (d).

$$\hat{x}(t) = \sqrt{\frac{1}{2\omega}} (\hat{a}e^{-i\omega t} + \hat{a}^{\dagger}e^{i\omega t})$$
$$\hat{p}(t) = -i\sqrt{\frac{\omega}{2}} (\hat{a}e^{-i\omega t} - \hat{a}^{\dagger}e^{i\omega t})$$
$$H(t) = H = \omega(\hat{a}^{\dagger}\hat{a} + \frac{1}{2})$$

Question 2: Lorentz transformations (15 points)

(a) Probe that the 4-dimensional δ -function

$$\delta^{(4)}(p) = \delta(p^0)\delta(p^1)\delta(p^2)\delta(p^3)$$

is Lorentz invariant, i.e.

$$\delta^{(4)}(p) = \delta^{(4)}(\tilde{p})$$

where \tilde{p}^{μ} is a Lorentz transformation of p^{μ} .

We express the δ -function in integral form, and use that $p \cdot x$ is a Lorentz scalar, i.e. $\Lambda p \cdot \Lambda x = p \cdot x$.

$$\delta^{(4)}(p) = \frac{1}{(2\pi)^4} \int d^4 x e^{ip \cdot x} = \frac{1}{(2\pi)^4} \int d^4 x e^{i\Lambda p \cdot \Lambda x}$$

Now we make the change of variables $\tilde{x} = \Lambda x$. Note that $d^4 \tilde{x} = d^4 x$. To see this we use $\Lambda^T \eta \Lambda = \eta$, which implies $1 = \det(\Lambda^T) \det(\Lambda) = (\det \Lambda)^2$. Hence, the Jacobian $J = |\det \Lambda| = 1$. One thus has

$$\delta^{(4)}(p) = \frac{1}{(2\pi)^4} \int d^4 \tilde{x} e^{i\Lambda p \cdot \tilde{x}} = \frac{1}{(2\pi)^4} \int d^4 x e^{i\Lambda p \cdot x} = \delta^{(4)}(\Lambda p)$$

(b) Show that

$$\omega_1 \delta^{(3)} (\vec{k}_1 - \vec{k}_2)$$

is Lorentz invariant, i.e.

$$\omega_1 \delta^{(3)}(\vec{k}_1 - \vec{k}_2) = \omega_1' \delta^{(3)}(\vec{k}_1' - \vec{k}_2')$$

Here \vec{k}_1 and \vec{k}_2 are respectively the spatial part of four-vectors $k_1^{\mu} = (\omega_1, \vec{k}_1)$ and $k_2^{\mu} = (\omega_2, \vec{k}_2)$ which satisfy the on-shell condition

$$k_1^2 + k_2^2 = -m^2$$

and $k_1^{\prime \mu} = (\omega_1^{\prime}, \vec{k}_1^{\prime}), k_2^{\prime \mu} = (\omega_2^{\prime}, \vec{k}_2^{\prime})$ are related to k_1^{μ}, k_2^{μ} by the same Lorentz transformation. We consider the expression $\delta(k^2 + m^2)$ which imposes the mass-shell constraint. We can simplify this using the δ -function identity $\delta(f(x)) = \sum_{x_i \text{ s.t. } f(x_i)=0} \frac{1}{|f'(x_i)|} \delta(x - x_i).$

$$\delta(k^2 + m^2) = \delta(-k_0^2 + \vec{k}^2 + m^2) = \frac{1}{2|\omega_{\vec{k}}|} \left(\delta(k_0 - |\omega_{\vec{k}}|) + \delta(k_0 + |\omega_{\vec{k}}|)\right) \tag{1}$$

We will assume $\omega_{\vec{k}_1}, \omega_{\vec{k}_2} > 0$, as is the case for physical 4-momenta. We can pick out the $k_1^0 = \omega_{\vec{k}_1}$ enforcing δ -function in (1) by multiplying both sides by $\theta(\omega_{\vec{k}_1})$.

$$\theta(\omega_{\vec{k}_1})\delta(k_1^2 + m^2) = \frac{1}{2\omega_{\vec{k}_1}}\delta(k_1^0 - \omega_{\vec{k}_1})\theta(\omega_{\vec{k}_1}) = \frac{1}{2\omega_{\vec{k}_1}}\delta(k_1^0 - \omega_{\vec{k}_1})$$
(2)

Now we multiply both sides by $\delta^{(3)}(\vec{k}_1 - \vec{k}_2)$:

$$\theta(\omega_{\vec{k}_{1}})\delta(k_{1}^{2}+m^{2}) \cdot 2\omega_{\vec{k}_{1}}\delta^{(3)}(\vec{k}_{1}-\vec{k}_{2}) = \delta(k_{1}^{0}-\omega_{\vec{k}_{1}})\delta^{(3)}(\vec{k}_{1}-\vec{k}_{2})$$

$$= \delta(k_{1}^{0}-\omega_{\vec{k}_{2}})\delta^{(3)}(\vec{k}_{1}-\vec{k}_{2})$$

$$= \delta(k_{1}^{0}-k_{2}^{0})\delta^{(3)}(\vec{k}_{1}-\vec{k}_{2})$$

$$\theta(\omega_{\vec{k}_{1}})\delta(k_{1}^{2}+m^{2}) \cdot 2\omega_{\vec{k}_{1}}\delta^{(3)}(\vec{k}_{1}-\vec{k}_{2}) = \delta^{(4)}(k_{1}^{\mu}-k_{2}^{\mu})$$
(3)

In the second equality, we use that the $\delta^{(3)}(\vec{k}_1 - \vec{k}_2)$ allows us to replace $\omega_{\vec{k}_1}$ with $\omega_{\vec{k}_2}$. For this step, it is crucial that $\operatorname{sign}(\omega_{\vec{k}_1}) = \operatorname{sign}(\omega_{\vec{k}_2})$, which is true since both are positive.

Finally, let us study (3). The right-hand side is Lorentz invariant by part (a). On the left-hand side, $\delta(k_1^2 + m^2)$ is Lorentz invariant since k_1^2 is a Lorentz scalar, and $\theta(\omega_{\vec{k_1}})$ is Lorentz invariant because the energy of a particle does not change under a (proper, orthochronous) Lorentz transformation. It then follows that $\omega_{\vec{k_1}} \delta^{(3)}(\vec{k_1} - \vec{k_2})$ is Lorentz invariant.

(c) For any function $f(k) = f(k^0, k^1, k^2, k^3)$, prove that

$$\int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{1}{2\omega_{\vec{k}}} f(k), \qquad \omega_{\vec{k}} = \sqrt{\vec{k^2} + m^2}$$

is Lorentz invariant, in the sense that

$$\int \frac{d^3\vec{k}}{(2\pi)^3} \frac{1}{2\omega_{\vec{k}}} f(k) = \int \frac{d^3\vec{k}}{(2\pi)^3} \frac{1}{2\omega_{\vec{k}}} f(\tilde{k})$$

where $\tilde{k}^{\mu} = \Lambda^{\mu}{}_{\nu}k^{\nu}$ is a Lorentz transformation of k^{μ} .

Since the momentum is on the mass-shell, we write $f(k) = f(\omega_{\vec{k}}, \vec{k})$. By introducing another δ -function, we may write this expression as a integral over 4-dimensions:

$$\int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{1}{2\omega_{\vec{k}}} f(k) = \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{1}{2\omega_{\vec{k}}} f(\omega_{\vec{k}}, \vec{k}) = \frac{1}{(2\pi)^3} \int d^4 k \frac{1}{2\omega_{\vec{k}}} \delta(k^0 - \omega_{\vec{k}}) f(k^0, \vec{k})$$
$$= \frac{1}{(2\pi)^3} \int d^4 k \, \theta(\omega_{\vec{k}}) \delta(k^2 + m^2) f(k^\mu) \tag{4}$$

where in the last equality we have used (2).

Now we make a change of variables, $k = \Lambda k'$, for Λ an arbitrary (proper, orthochronous) Lorentz transformation. In parts (a)-(b), we showed that $d^4k = d^4k'$, $\theta(\omega_{\vec{k}}) = \theta(\omega_{\vec{k}'})$, and $\delta(k^2 + m^2) = \delta(k'^2 + m^2)$. Hence,

$$\begin{aligned} \frac{1}{(2\pi)^3} \int d^4k \,\theta(\omega_{\vec{k}}) \delta(k^2 + m^2) f(k^\mu) &= \frac{1}{(2\pi)^3} \int d^4k' \,\theta(\omega_{\vec{k}'}) \delta(k'^2 + m^2) f((\Lambda k')^\mu) \\ &= \int \frac{d^3\vec{k}}{(2\pi)^3} \frac{1}{2\omega_{\vec{k}}} f(\Lambda k) \end{aligned}$$

where the last equality is obtained using the reverse sequence of operations that led to (4). Putting everything together, we have the desired result,

$$\int \frac{d^3\vec{k}}{(2\pi)^3} \frac{1}{2\omega_{\vec{k}}} f(k) = \int \frac{d^3\vec{k}}{(2\pi)^3} \frac{1}{2\omega_{\vec{k}}} f(\Lambda k)$$

Question 3: A complex scalar field (20 points)

Consider the field theory of a complex valued scalar field $\phi(x)$ with action

$$S = \int d^4x \left(-\partial_\mu \phi^* \partial^\mu \phi - V(|\phi|^2) \right), \qquad |\phi|^2 = \phi^* \phi$$

One could either consider the real and imaginary parts of ϕ , or ϕ and ϕ^* as independent dynamical variables. The latter is more convenient in most situations.

(a) Check that the action is Lorentz invariant, and find the equations of motion.

A Lorentz transformation acts as $\phi \to \phi'$, such that $\phi'(x) = \phi(\Lambda^{-1}x)$. The action transforms as:

$$S \to S' = \int d^4x \left(-\partial_\mu \phi'^*(x) \partial^\mu \phi'(x) - V(|\phi'(x)|^2) \right)$$
$$= \int d^4x \left(-\partial_\mu \phi^*(\Lambda^{-1}x) \partial^\mu \phi(\Lambda^{-1}x) - V(|\phi(\Lambda^{-1}x)|^2) \right)$$

Now we make the change of variable $x' = \Lambda^{-1}x$. We showed in 2(a) that $d^4x = d^4x'$. Furthermore, by the chain rule we have $\partial_{\mu} = (\Lambda^{-1})_{\mu}{}^{\nu}\partial'_{\nu}$. Here ∂_{μ} and ∂'_{μ} denote differentiation with respect to x and x'.

$$S' = \int d^4x' \left(-(\Lambda^{-1})_{\mu}{}^{\nu}\partial'_{\nu}\phi^*(x') (\Lambda^{-1})^{\mu}{}_{\rho}\partial'^{\rho}\phi(x') - V(|\phi(x')|^2) \right)$$

=
$$\int d^4x' \left(-\delta'_{\rho}\partial'_{\nu}\phi^*(x')\partial'^{\rho}\phi(x') - V(|\phi(x')|^2) \right)$$

=
$$\int d^4x' \left(-\partial'_{\nu}\phi^*(x')\partial'^{\nu}\phi(x') - V(|\phi(x')|^2) \right) = S$$

where in the second line we use

$$(\Lambda^{-1})_{\mu}{}^{\nu}(\Lambda^{-1})^{\mu}{}_{\rho} = ((\Lambda^{-1})^{T})^{\nu}{}_{\mu}(\Lambda^{-1})^{\mu}{}_{\rho} = (\Lambda)^{\nu}{}_{\mu}(\Lambda^{-1})^{\mu}{}_{\rho} = \delta^{\nu}{}_{\rho}$$

To find the equations of motion, we use the Euler-Lagrange equations, treating ϕ and ϕ^* as independent:

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} = \frac{\partial \mathcal{L}}{\partial \phi}, \qquad \qquad \partial_{\mu} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi^{*})} = \frac{\partial \mathcal{L}}{\partial \phi^{*}}$$

The left-hand side can be confusing to evaluate due to the contracted indices, so we do one calculation very explicitly:

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} = \partial_{\mu} \left[\frac{\partial}{\partial(\partial_{\mu}\phi)} (-\partial_{\nu}\phi^* \partial^{\nu}\phi) \right] = \partial_{\mu} [-\partial_{\nu}\phi^* \delta^{\nu}_{\mu}] = -\partial^2 \phi^*$$

Hence, the equations of motion are

$$\partial^2 \phi^* - V'(|\phi|^2)\phi^* = 0, \qquad \qquad \partial^2 \phi - V'(|\phi|^2)\phi = 0$$

Note that these are conjugate equations, as expected.

(b) Find the canonical conjugate momenta for ϕ and ϕ^* , and the Hamiltonian H. We write the Lagrangian density as

$$\mathcal{L} = \partial_t \phi^* \partial_t \phi - \vec{\nabla} \phi^* \cdot \vec{\nabla} \phi - V(|\phi|^2)$$

The conjugate momenta are thus

$$\pi := \frac{\partial \mathcal{L}}{\partial(\partial_t \phi)} = \partial_t \phi^*, \qquad \qquad \pi^* := \frac{\partial \mathcal{L}}{\partial(\partial_t \phi^*)} = \partial_t \phi$$

The Hamiltonian is given by

$$H = \int d^3x (\pi \partial_t \phi + \pi^* \partial_t \phi - \mathcal{L}) = \int d^3x (\pi^* \pi + \vec{\nabla} \phi^* \cdot \vec{\nabla} \phi + V(|\phi|^2))$$

(c) The action is invariant under the transformation

$$\phi \to e^{i\alpha}\phi, \qquad \phi^* \to e^{-i\alpha}\phi^*$$

for arbitrary constant α . When α is small, i.e. for an infinitesimal transformation, this becomes

$$\delta\phi = i\alpha\phi, \qquad \qquad \delta\phi^* = -i\alpha\phi^*$$

Use Noether's theorem to find the corresponding conserved current j^{μ} and conserved charge Q. By Noether's theorem, the conserved current is given by

$$j^{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \Phi_{a})} \delta \Phi_{a} - \mathcal{F}^{\mu}, \qquad \qquad \delta \mathcal{L} = \partial_{\mu} \mathcal{F}^{\mu}$$

In this case, $\delta \phi = i \alpha \phi$, $\delta \phi^* = -i \alpha \phi^*$, and $\delta \mathcal{L} = 0$. We find

$$j^{\mu} = -\partial^{\mu}\phi^{*}(i\alpha\phi) - \partial^{\mu}\phi(-i\alpha\phi^{*}) = i\alpha(\phi^{*}\partial^{\mu}\phi - \phi\partial^{\mu}\phi^{*})$$

One may remove the proportionality constant if desired, to get

$$j^{\mu} = \phi^* \partial^{\mu} \phi - \phi \partial^{\mu} \phi^*$$

The corresponding charge is then

$$Q = \int d^3x j^0 = \int d^3x (\phi^* \partial_t \phi - \phi \partial_t \phi^*)$$

(d) Use the equations of motion from part (a) to verify directly that j^{μ} is conserved. We compute:

$$\partial_{\mu}j^{\mu} = \partial_{\mu}(\phi^*\partial^{\mu}\phi - \phi\partial^{\mu}\phi^*) = \phi^*\partial^2\phi - \phi\partial^2\phi^*$$
$$= V'(|\phi|^2)\phi^*\phi - V'(|\phi|^2)\phi^*\phi = 0$$

where in the second line we use the equations of motion from part (a).

Question 4: The energy-momentum tensor (20 points)

In this problem we work out the energy-momentum tensor of the complex scalar theory in Question 3. (a) Under a spacetime translation

$$x^{\mu} \to x'^{\mu} = x^{\mu} + a^{\mu}$$

a scalar field transforms as

$$\phi'(x') = \phi(x)$$

Show that the action is invariant under the transformation $\phi(x) \to \phi'(x)$. Under the transformation, the scalar field satisfies $\phi'(x) = \phi(x-a)$. The action transforms as:

$$S \to S' = \int d^4x \left(-\partial_\mu \phi'^*(x) \partial^\mu \phi'(x) - V(|\phi'(x)|^2) \right)$$
$$= \int d^4x \left(-\partial_\mu \phi^*(x-a) \partial^\mu \phi(x-a) - V(|\phi(x-a)|^2) \right)$$
$$= \int d^4x \left(-\partial_\mu \phi^*(x) \partial^\mu \phi(x) - V(|\phi(x)|^2) \right) = S$$

where in the last line we change variables from $x^{\mu} \to x^{\mu} + a^{\mu}$, which does not change the integration measure.

(b) Write down the transformation of the scalar fields ϕ and ϕ^* for an infinitesimal translation, and use Noether's theorem to find the corresponding conserved currents $T^{\mu\nu}$.

An infinitesimal translation acts on the fields as:

$$\delta\phi = \phi'(x) - \phi(x) = \phi(x - a) - \phi(x) = -a^{\mu}\partial_{\mu}\phi(x) \delta\phi^* = \phi'^*(x) - \phi^*(x) = \phi^*(x - a) - \phi^*(x) = -a^{\mu}\partial_{\mu}\phi^*(x)$$

We also need the change in the Lagrangian density under translations:

$$\begin{split} \delta \mathcal{L} &= \mathcal{L}' - \mathcal{L} = -\partial_{\nu} (\phi^{*}(x) - a^{\mu} \partial_{\mu} \phi^{*}(x)) \ \partial^{\nu} (\phi(x) - a^{\mu} \partial_{\mu} \phi(x)) \\ &- V \big((\phi^{*}(x) - a^{\mu} \partial_{\mu} \phi^{*}(x)) (\phi(x) - a^{\mu} \partial_{\mu} \phi(x)) \big) - \mathcal{L} \\ &= a^{\mu} (\partial_{\nu} \partial_{\mu} \phi^{*}(x) \partial^{\nu} \phi(x) + \partial_{\nu} \phi^{*}(x) \partial^{\nu} \partial_{\mu} \phi(x)) + a^{\mu} V'(\phi^{*} \phi) \big(\partial_{\mu} \phi^{*} \phi + \phi^{*} \partial_{\mu} \phi \big) + \mathcal{O}(a^{\mu} a^{\nu}) \\ &= -a^{\mu} \partial_{\mu} \mathcal{L} = a_{\mu} \partial_{\nu} (-\eta^{\mu \nu} \mathcal{L}) := (a_{\mu} \partial_{\nu}) \mathcal{F}^{\mu \nu} \end{split}$$

The translations are parameterized by a 4-vector a^{μ} , and we have a Noether current (itself a 4-vector) for each. Hence, we can encode the conserved currents from translations into a rank-2 tensor, $T^{\mu\nu}$. In the following, we let the first index pick out the direction of the translation a^{μ} .

The Noether current is

$$T^{\mu\nu} := (j^{\mu})^{\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\nu}\phi)} (\delta\phi)^{\mu} + \frac{\partial \mathcal{L}}{\partial(\partial_{\nu}\phi^{*})} (\delta\phi^{*})^{\mu} - \mathcal{F}^{\mu\nu}$$
$$= -\partial^{\nu}\phi^{*}(-\partial^{\mu}\phi) - \partial^{\nu}\phi(-\partial^{\mu}\phi^{*}) + \eta^{\mu\nu}\mathcal{L}$$
$$= \partial^{\mu}\phi^{*}\partial^{\nu}\phi + \partial^{\nu}\phi^{*}\partial^{\mu}\phi - \eta^{\mu\nu} (\partial_{\rho}\phi^{*}\partial^{\rho}\phi + V(|\phi|^{2}))$$

(c) The conserved charge for a time translation

$$H = \int d^3x T^{00}$$

should be identified with the total energy of the system, while that for a spatial translation

$$P^i = \int d^3x T^{0i}$$

is identified with the total momentum. Thus $T^{\mu\nu}$ is referred to as the energy-momentum tensor. Write down the explicit expressions for H and P^i . Compare H obtained here with the Hamiltonian in problem 3(b).

We compute:

$$H = \int d^3x T^{00} = \int d^3x \left(2\partial^t \phi^* \partial^t \phi + (-\partial^t \phi^* \partial^t \phi + \vec{\nabla} \phi^* \cdot \vec{\nabla} \phi + V(|\phi|^2)) \right)$$

=
$$\int d^3x \left(\partial_t \phi^* \partial_t \phi + \vec{\nabla} \phi^* \cdot \vec{\nabla} \phi + V(|\phi|^2)) \right)$$

$$P^i = \int d^3x T^{0i} = \int d^3x \left(\partial^t \phi^* \partial^i \phi + \partial^i \phi^* \partial^t \phi \right) = -\int d^3x \left(\partial_t \phi^* \partial_i \phi + \partial_i \phi^* \partial_t \phi \right)$$

The expression for the Hamiltonian is equal to the Hamiltonian obtained in problem 3(b).

(d) Use the equations of motion of problem 3(a) to verify directly that $T^{\mu\nu}$ is conserved.

Recall that the first index of $T^{\mu\nu}$ picks out the direction of the translation a^{μ} , so formally Noether conservation should tell us $\partial_{\nu}T^{\mu\nu} = 0$. However, from part (c) it can be seen that $T^{\mu\nu}$ is symmetric, so we can contract the derivative with respect to either index.

We compute:

$$\begin{aligned} \partial_{\mu}T^{\mu\nu} &= \partial_{\mu}(\partial^{\mu}\phi^{*}\partial^{\nu}\phi + \partial^{\nu}\phi^{*}\partial^{\mu}\phi) - \partial^{\nu}(\partial_{\rho}\phi^{*}\partial^{\rho}\phi) - \partial^{\nu}V(|\phi|^{2}) \\ &= \partial^{2}\phi^{*}\partial^{\nu}\phi + \partial^{\nu}\phi^{*}\partial^{2}\phi - \partial^{\nu}V(|\phi|^{2}) \\ &= \phi^{*}\partial^{\nu}\phi \ V'(|\phi|^{2}) + \phi\partial^{\nu}\phi^{*} \ V'(|\phi|^{2}) - \phi^{*}\partial^{\nu}\phi \ V'(|\phi|^{2}) - \phi\partial^{\nu}\phi^{*} \ V'(|\phi|^{2}) = 0 \end{aligned}$$

where we use the equations of motion in the 3rd equality. Thus the Noether currents are conserved.

8.323 Relativistic Quantum Field Theory I Spring 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.