8.323 Problem Set 2 Solutions

February 21, 2023

Question 1: A Problem with Relativistic Quantum Mechanics (20 points)

The Schrödfinger equation for a free non-relativistic particle is:

$$
i \partial_{t} \psi(\vec{x}, t)=-\frac{1}{2 m} \nabla^{2} \psi(\vec{x}, t)
$$

The generalization of the above equation to a free relativistic particle is the so-called Klein-Gordon equation

$$
\partial_{t}^{2} \psi(\vec{x}, t)-\nabla^{2} \psi(\vec{x}, t)+m^{2} \psi(\vec{x}, t)=0
$$

We emphasize that in both these equations, $\psi(\vec{x}, t)$ is interpreted as a wave function for the dynamical variable $\vec{x}(t)$, rather than a dynamical field.
(a) As a reminder, derive from the Schrödinger equation the continuity equation for the probability

$$
\partial_{t} \rho+\nabla \cdot \vec{J}=0
$$

where

$$
\rho=|\psi|^{2}, \quad \vec{J}=-\frac{i}{2 m}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right)
$$

We compute:

$$
\begin{aligned}
\partial_{t} \rho=\psi \partial_{t} \psi^{*}+\psi^{*} \partial_{t} \psi & =-\frac{i}{2 m}\left(\psi \vec{\nabla}^{2} \psi^{*}-\psi^{*} \vec{\nabla}^{2} \psi\right) \\
& =\frac{i}{2 m} \vec{\nabla} \cdot\left(\psi^{*} \vec{\nabla} \psi-\psi \vec{\nabla} \psi^{*}\right)=-\vec{\nabla} \cdot \vec{J}
\end{aligned}
$$

where we use the Schrödinger equation in the second equality.
(b) Suppose $\psi(\vec{x}, t)$ has the plane wave form, i.e.

$$
\psi(\vec{x}, t) \propto e^{i \vec{k} \cdot \vec{x}}
$$

for some real vector \vec{k}. Find the solutions to the Klein-Gordon equation above.
We substitute the ansatz $\psi(\mathbf{x}, t)=e^{i \mathbf{k} \cdot \mathbf{x}} \phi(t)$ into the Klein-Gordon equation to get an equation for $\phi(t)$:

$$
\partial_{t}^{2} \phi+\left(\mathbf{k}^{2}+m^{2}\right) \phi=0
$$

This has plane-wave solutions of positive and negative frequencies,

$$
\phi(t)=A e^{-i \omega_{\mathbf{k}} t}+B e^{i \omega_{\mathbf{k}} t}, \quad \omega_{\mathbf{k}}=\sqrt{\mathbf{k}^{2}+m^{2}}
$$

Hence, the Klein-Gordon equation has solutions

$$
\psi(\vec{x}, t)=A e^{i\left(-\omega_{\mathbf{k}} t+\mathbf{k} \cdot \mathbf{x}\right)}+B e^{i\left(\omega_{\mathbf{k}} t+\mathbf{k} \cdot \mathbf{x}\right)}
$$

(c) Show that the Klein-Gordon equation also leads to a continuity equation, with ρ and \vec{J} now given by

$$
\rho=\frac{i}{2 m}\left(\psi^{*} \partial_{t} \psi-\psi \partial_{t} \psi^{*}\right) . \quad \vec{J}=-\frac{i}{2 m}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right)
$$

In the same way as in part (a), we compute:

$$
\partial_{t} \rho=\frac{i}{2 m}\left(\psi^{*} \partial_{t}^{2} \psi-\psi \partial_{t}^{2} \psi^{*}\right)=\frac{i}{2 m}\left(\psi^{*} \nabla^{2} \psi-\psi \nabla^{2} \psi^{*}\right)=-\vec{\nabla} \cdot \vec{J}
$$

where we use the Klein-Gordon equation in the second equality.
(d) Argue that this ρ cannot be interpreted as a probability density.

We write

$$
\rho=\frac{i}{2 m}\left(\psi^{*} \partial_{t} \psi-\psi \partial_{t} \psi^{*}\right)=\frac{1}{m} \operatorname{Im}\left(\psi \partial_{t} \psi^{*}\right)
$$

Any proper probability density must be positive definite, i.e. $\rho \geq 0$. This is not the case here. For instance, for the plane wave solution $A=0, B$ from (b) we compute

$$
\rho=\operatorname{Im}\left(B e^{i \omega_{\mathbf{k}} t+i \mathbf{k} \cdot \mathbf{x}}\left(-i \omega_{\mathbf{k}}\right) B e^{-i \omega_{\mathbf{k}} t-i \mathbf{k} \cdot \mathbf{x}}\right)=-B^{2} \omega_{\mathbf{k}}<0
$$

Since $\omega_{\mathbf{k}}=\sqrt{\mathbf{k}^{2}+m^{2}}>0$, the existence of negative-frequency solutions means that ρ cannot be positive definite, and cannot be interpreted as a probability density.

Question 2: Commutation relations of creation and annihilation operators (20 points) For the real scalar field theory discussed in lecture,

$$
\mathcal{L}=-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}
$$

we showed that the time-evolution of the quantum operator $\phi(\mathrm{x}, t)$ is given by

$$
\phi(\mathbf{x}, t)=\int d^{2} k \frac{1}{\sqrt{2 \omega_{\mathbf{k}}}}\left(a_{\mathbf{k}} u_{\mathbf{k}}(\mathbf{x}, t)+a_{\mathbf{k}}^{\dagger} u_{\mathbf{k}}^{*}(\mathbf{x}, t)\right)
$$

where

$$
\omega_{\mathbf{k}}=\sqrt{\mathbf{k}^{2}+m^{2}}, \quad u_{\mathbf{k}}=e^{-i \omega_{\mathbf{k}} t+i \mathbf{k} \cdot \mathbf{x}}
$$

We use $\pi(\mathrm{x}, t)$ to denote the momentum density conjugate to ϕ. The canonical commutation relations among ϕ and π are

$$
\left[\phi(\mathrm{x}, t), \phi\left(\mathrm{x}^{\prime}, t\right)\right]=\left[\pi(\mathrm{x}, t), \pi\left(\mathrm{x}^{\prime}, t\right)\right]=0, \quad\left[\phi(\mathrm{x}, t), \pi\left(\mathrm{x}^{\prime}, t\right)\right]=i \delta^{(3)}\left(\mathrm{x}-\mathrm{x}^{\prime}\right)
$$

(a) Show that it is enough to impose the canonical commutation relations at $t=0$. That is, once we impose them at $t=0$, then the relations at general t are automatically satisfied.
Note: this statement in fact applies not only to $V(\phi)=\frac{1}{2} m^{2} \phi^{2}$, but any potential $V(\phi)$.
In the Heisenberg picture we have:

$$
\left[A(\mathbf{x}, t), B\left(\mathbf{x}^{\prime}, t\right)\right]=\left[e^{i H t} A(\mathbf{x}, 0) e^{-i H t}, e^{i H t} B\left(\mathbf{x}^{\prime}, 0\right) e^{-i H t}\right]=e^{i H t}\left[A(\mathbf{x}, 0), B\left(\mathbf{x}^{\prime}, 0\right)\right] e^{-i H t}
$$

Now let us impose the canonical commutation relations at $t=0$. Then, it follows that

$$
\begin{aligned}
& {\left[\phi(\mathbf{x}, t), \phi\left(\mathbf{x}^{\prime}, t\right)\right]=\left[\pi(\mathbf{x}, t), \pi\left(\mathbf{x}^{\prime}, t\right)\right]=e^{i H t} 0 e^{-i H t}=0} \\
& {\left[\phi(\mathbf{x}, t), \pi\left(\mathbf{x}^{\prime}, t\right)\right]=e^{i H t} i \delta^{(3)}\left(\mathbf{x}-\mathbf{x}^{\prime}\right) e^{-i H t}=i \delta^{(3)}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}
\end{aligned}
$$

These are again precisely the canonical commutation relations, now at generic t.
(b) Express $a_{\mathbf{k}}$ and $a_{\mathbf{k}}^{\dagger}$ in terms of $\phi(\mathbf{k})$ and $\pi(\mathbf{k})$, where $\phi(\mathbf{k})$ and $\pi(\mathbf{k})$ are Fourier transforms of $\phi(\mathbf{x}, t=0)$ and $\pi(\mathbf{x}, t=0)$, e.g.

$$
\phi(\mathbf{k})=\int d^{3} x e^{-i \mathbf{k} \cdot \mathbf{x}} \phi(\mathbf{x}, t=0)
$$

We start with the mode expansions for $\phi(\mathbf{x}, t)$ and $\pi(\mathbf{x}, t)$

$$
\begin{aligned}
& \phi(\mathbf{x}, t)=\int d^{3} k \frac{1}{\sqrt{2 \omega_{\mathbf{k}}}}\left(a_{\mathbf{k}} e^{-i \omega_{\mathbf{k}} t+i \mathbf{k} \cdot \mathbf{x}}+a_{\mathbf{k}}^{\dagger} e^{i \omega_{\mathbf{k}} t-i \mathbf{k} \cdot \mathbf{x}}\right) \\
& \pi(\mathbf{x}, t)=-i \int d^{3} k \sqrt{\frac{\omega_{\mathbf{k}}}{2}}\left(a_{\mathbf{k}} e^{-i \omega_{\mathbf{k}} t+i \mathbf{k} \cdot \mathbf{x}}-a_{\mathbf{k}}^{\dagger} e^{i \omega_{\mathbf{k}} t-i \mathbf{k} \cdot \mathbf{x}}\right)
\end{aligned}
$$

This is almost of the form of a Fourier transform, and by changing variables of one of the terms from $\mathbf{k} \rightarrow-\mathbf{k}$ we have

$$
\begin{aligned}
& \phi(\mathbf{k}, t)=\frac{1}{\sqrt{2 \omega_{\mathbf{k}}}}\left(a_{\mathbf{k}} e^{-i \omega_{\mathbf{k}} t}+a_{-\mathbf{k}}^{\dagger} e^{i \omega_{\mathbf{k}} t}\right) \\
& \pi(\mathbf{k}, t)=-i \sqrt{\frac{\omega_{\mathbf{k}}}{2}}\left(a_{\mathbf{k}} e^{-i \omega_{\mathbf{k}} t}-a_{-\mathbf{k}}^{\dagger} e^{i \omega_{\mathbf{k}} t}\right)
\end{aligned}
$$

Now, observe that the equations are decoupled in \mathbf{k}. We can take $t=0$ and solve this as a regular system of equations for $a_{\mathbf{k}}$ and $a_{\mathbf{k}}^{\dagger}$.

$$
\begin{align*}
& a_{\mathbf{k}}=\sqrt{\frac{\omega_{\mathbf{k}}}{2}} \phi(\mathbf{k})+i \sqrt{\frac{1}{2 \omega_{\mathbf{k}}}} \pi(\mathbf{k}) \\
& a_{\mathbf{k}}^{\dagger}=\sqrt{\frac{\omega_{\mathbf{k}}}{2}} \phi(-\mathbf{k})-i \sqrt{\frac{1}{2 \omega_{\mathbf{k}}}} \pi(-\mathbf{k}) \tag{1}
\end{align*}
$$

(c) Using the expressions derived in part (b), deduce the commutation relations

$$
\left[a_{\mathbf{k}}, a_{\mathbf{k}^{\prime}}\right], \quad\left[a_{\mathbf{k}}^{\dagger}, a_{\mathbf{k}^{\prime}}^{\dagger}\right], \quad\left[a_{\mathbf{k}}, a_{\mathbf{k}^{\prime}}^{\dagger}\right]
$$

from the commutation relations above at $t=0$.
It is useful to take the Fourier transform \mathcal{F} (from position to momentum space) of the $t=0$ canonical commutation relations:

$$
\begin{aligned}
{\left[\phi(\mathbf{k}), \phi\left(\mathbf{k}^{\prime}\right)\right] } & =\left[\pi(\mathbf{k}), \pi\left(\mathbf{k}^{\prime}\right)\right]=\mathcal{F}_{\mathbf{x} \rightarrow \mathbf{k}} \circ \mathcal{F}_{\mathbf{x}^{\prime} \rightarrow \mathbf{k}^{\prime}}(0)=0 \\
{\left[\phi(\mathbf{k}), \pi\left(\mathbf{k}^{\prime}\right)\right] } & =\mathcal{F}_{\mathbf{x} \rightarrow \mathbf{k}} \circ \mathcal{F}_{\mathbf{x}^{\prime} \rightarrow \mathbf{k}^{\prime}}\left(i \delta^{(3)}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right)=i \int d^{3} \mathbf{x} d^{3} \mathbf{x}^{\prime} e^{-i \mathbf{k} \cdot \mathbf{x}} e^{-i \mathbf{k}^{\prime} \cdot \mathbf{x}^{\prime}} \delta^{(3)}\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \\
& =i \int d^{3} \mathbf{x} e^{-i\left(\mathbf{k}+\mathbf{k}^{\prime}\right) \cdot \mathbf{x}}=i(2 \pi)^{3} \delta^{(3)}\left(\mathbf{k}+\mathbf{k}^{\prime}\right)
\end{aligned}
$$

Now we compute commutators of creation and annihilation operators using the results in (b)

$$
\begin{align*}
{\left[a_{\mathbf{k}}, a_{\mathbf{k}^{\prime}}\right] } & =+\frac{i}{2}\left(\left[\phi(\mathbf{k}), \pi\left(\mathbf{k}^{\prime}\right)\right]+\left[\pi(\mathbf{k}), \phi\left(\mathbf{k}^{\prime}\right)\right]\right) \\
{\left[a_{\mathbf{k}}^{\dagger}, a_{\mathbf{k}^{\prime}}^{\dagger}\right] } & =-\frac{i}{2}\left(\left[\phi(-\mathbf{k}), \pi\left(-\mathbf{k}^{\prime}\right)\right]+\left[\pi(-\mathbf{k}), \phi\left(-\mathbf{k}^{\prime}\right)\right]\right)=-\frac{1}{2}(2 \pi)^{3}\left(\delta^{(3)}\left(\mathbf{k}+\mathbf{k}^{\prime}\right)-\delta^{(3)}\left(\delta^{(3)}\left(-\mathbf{k}-\mathbf{k}^{\prime}\right)-\delta^{(3)}\left(-\mathbf{k}^{\prime}-\mathbf{k}\right)\right)=0\right. \\
{\left[a_{\mathbf{k}}, a_{\mathbf{k}^{\prime}}^{\dagger}\right] } & =+\frac{i}{2}\left(-\left[\phi(\mathbf{k}), \pi\left(-\mathbf{k}^{\prime}\right)\right]+\left[\pi(\mathbf{k}), \phi\left(-\mathbf{k}^{\prime}\right)\right]\right) \\
& =-\frac{1}{2}(2 \pi)^{3}\left(-\delta^{(3)}\left(\mathbf{k}-\mathbf{k}^{\prime}\right)-\delta^{(3)}\left(\mathbf{k}^{\prime}-\mathbf{k}\right)\right) \tag{2}\\
& =(2 \pi)^{3} \delta^{(3)}\left(\mathbf{k}-\mathbf{k}^{\prime}\right)
\end{align*}
$$

Question 3: Noether charges in terms of creation and annihilation operators (20 points)
In problem set 1, we obtained the conserved charges associated with spacetime translational symmetries for a complex scalar field theory. The results there can be easily converted to the corresponding expressions for a real scalar field theory.

$$
\mathcal{L}=-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}
$$

(a) Express the Hamiltonian H of this theory in terms of $a_{\mathbf{k}}$ and $a_{\mathbf{k}}^{\dagger}$.

From problem set 1, we quote

$$
H=\frac{1}{2} \int d^{3} x\left(\pi^{2}+(\nabla \phi)^{2}+m^{2} \phi^{2}\right)
$$

It is convenient to first convert this expression into momentum space, before using the decomposition into creation and annihilation operators. We use the identity:

$$
\begin{align*}
\int d^{3} \mathbf{x} f(\mathbf{x}) g(\mathbf{x}) & =\int d^{3} \mathbf{x} d^{3} \mathbf{k} d^{3} \mathbf{k}^{\prime} e^{i\left(\mathbf{k}+\mathbf{k}^{\prime}\right) \cdot \mathbf{x}} f(\mathbf{k}) g\left(\mathbf{k}^{\prime}\right) \\
& =\frac{1}{(2 \pi)^{3}} \int d^{3} \mathbf{k} d^{3} \mathbf{k}^{\prime} \delta^{(3)}\left(\mathbf{k}+\mathbf{k}^{\prime}\right) f(\mathbf{k}) g\left(\mathbf{k}^{\prime}\right)=\int d^{3} \mathbf{k} f(\mathbf{k}) g(-\mathbf{k}) \tag{3}
\end{align*}
$$

More generally if there are derivatives acting on f or g, each derivative acting on f drags down a factor of $i \mathbf{k}$, while each derivative actin on g drags down a factor of $i \mathbf{k}^{\prime}$, which becomes $-i \mathbf{k}$ after performing the $d^{3} \mathbf{x}$ integral. We further use the shorthand $d x=d x / 2 \pi$ (d is to d as \hbar is to h).

Hence, we can now write

$$
\begin{aligned}
H & =\frac{1}{2} \int d^{3} \mathbf{k}\left(\pi(\mathbf{k}, t) \pi(-\mathbf{k}, t)+\left(\mathbf{k}^{2}+m^{2}\right) \phi(\mathbf{k}, t) \phi(-\mathbf{k}, t)\right) \\
& =\frac{1}{2} \int d^{3} \mathbf{k}\left(\pi(\mathbf{k}, t) \pi(-\mathbf{k}, t)+\omega_{\mathbf{k}}^{2} \phi(\mathbf{k}, t) \phi(-\mathbf{k}, t)\right) \\
& =\frac{1}{2} \int d^{3} \mathbf{k} \frac{\omega_{\mathbf{k}}}{2}\left(a_{\mathbf{k}}(t) a_{\mathbf{k}}(t)^{\dagger}+a_{\mathbf{k}}(t)^{\dagger} a_{\mathbf{k}}(t)\right)=\int d^{3} \mathbf{k} \omega_{\mathbf{k}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}+\frac{1}{2}(2 \pi)^{3} \delta(0) \int d^{3} \mathbf{k} \omega_{\mathbf{k}}
\end{aligned}
$$

In the third equality we use the relations (1) from problem 2(b). In the last equality we use the commutator (2) from problem 2(c), as well as the expressions $a_{\mathbf{k}}(t)=e^{-i \omega_{\mathbf{k}} t} a_{\mathbf{k}}$ and $a_{\mathbf{k}}^{\dagger}(t)=e^{i \omega_{\mathbf{k}} t} a_{\mathbf{k}}^{\dagger}$. Note that in the above calculation, we showed that the time-dependence cancels explicitly. We could have also used that H is conserved to remove the time-dependence immediately by evaluating all fields at $t=0$.

This can be written as

$$
H=\int d^{3} \mathbf{k} \omega_{\mathbf{k}} N_{\mathbf{k}}+E_{0}
$$

for the number operator $N_{\mathbf{k}}=a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}$, and zero-point energy $E_{0}=\frac{1}{2}(2 \pi)^{3} \delta(0) \int d^{3} \mathbf{k} \omega_{\mathbf{k}}$.
(b) Express the conserved charges P^{i} for spatial translations, in terms of $a_{\mathbf{k}}$ and $a_{\mathbf{k}}^{\dagger}$.

Again we quote the charges from problem set 1, and use (3) to write it in momentum space.

$$
\begin{aligned}
P^{i} & =\int d^{3} \mathbf{x} \pi \partial^{i} \phi=-i \int d^{3} \mathbf{k} \pi(\mathbf{k}, t) \phi(-\mathbf{k}, t) k^{i} \\
& =\frac{1}{2} \int d^{3} \mathbf{k} k^{i}\left(a_{\mathbf{k}}(t)-a_{-\mathbf{k}}(t)^{\dagger}\right)\left(a_{-\mathbf{k}}(t)+a_{\mathbf{k}}(t)^{\dagger}\right) \\
& =\frac{1}{2} \int d^{3} \mathbf{k} k^{i}\left(a_{\mathbf{k}} a_{-\mathbf{k}} e^{-2 i \omega_{\mathbf{k}} t}+a_{\mathbf{k}} a_{\mathbf{k}}^{\dagger}-a_{-\mathbf{k}}^{\dagger} a_{-\mathbf{k}}-a_{-\mathbf{k}}^{\dagger} a_{\mathbf{k}}^{\dagger} e^{2 i \omega_{\mathbf{k}} t}\right)
\end{aligned}
$$

In the third equality we use the relations (1) from problem 2(b). Observe that due to the k^{i} factor and the commutation relations (2), the first and fourth terms in our final expression are odd under the change of variables $\mathbf{k} \rightarrow-\mathbf{k}$, so they must vanish. Therefore,

$$
P^{i}=\frac{1}{2} \int d^{3} \mathbf{k} k^{i}\left(a_{\mathbf{k}} a_{\mathbf{k}}^{\dagger}+a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}\right)=\int d^{3} \mathbf{k} k^{i} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}+\frac{1}{2} \int d^{3} \mathbf{k}(2 \pi)^{3} \delta^{(3)}(0) k^{i}=\int d^{3} \mathbf{k} k^{i} N_{\mathbf{k}}
$$

In the second equality we use the commutator (2), and in the third equality we note that the last term vanishes because the integrand is \mathbf{k}-odd.

We may combine this with the expression for H in part (a) to write

$$
\begin{equation*}
P^{\mu}=\int d^{3} \mathbf{k} k^{\mu} N_{\mathbf{k}}+\delta^{\mu 0} E_{0}, \quad k^{0}=\omega_{\mathbf{k}} \tag{4}
\end{equation*}
$$

(c) Starting with

$$
\phi(0,0)=\int d^{3} k \frac{1}{\sqrt{2 \omega_{\mathbf{k}}}}\left(a_{\mathbf{k}}+a_{\mathbf{k}}^{\dagger}\right)
$$

show that under the action of translation operators,

$$
\phi(\mathbf{x}, t)=e^{i H t-i P^{i} x^{i}} \phi(0,0) e^{-i H t+i P^{i} x^{i}}
$$

Hint: this problem becomes trivial using the following formula for a harmonic oscillator,

$$
e^{i \alpha N} a e^{-i \alpha N}=e^{-i \alpha} a, \quad N=a^{\dagger} a
$$

The formula in the hint follows from the Baker-Campbell-Hausdorff (BCH) formula,

$$
e^{X} Y e^{-X}=Y+[X, Y]+\frac{1}{2!}[X,[X, Y]]+\cdots
$$

We check:

$$
\begin{aligned}
{[i \alpha N, a] } & =i \alpha\left[a^{\dagger} a, a\right]=-i \alpha a \\
e^{i \alpha N} a e^{-i \alpha N} & =a+(-i \alpha) a+\frac{1}{2!}(-i \alpha)^{2} a+\cdots=e^{-i \alpha} a
\end{aligned}
$$

and similarly, $e^{-i \alpha N} a^{\dagger} e^{-i \alpha N}=e^{i \alpha} a^{\dagger}$.
Now we generalize. For $\alpha\left(\mathbf{k}^{\prime}\right)$ a real-valued function,

$$
\begin{align*}
e^{i \int d^{3} \mathbf{k}^{\prime} \alpha\left(\mathbf{k}^{\prime}\right) N_{\mathbf{k}^{\prime}}} a_{\mathbf{k}} e^{-i \int d^{3} \mathbf{k}^{\prime} \alpha\left(\mathbf{k}^{\prime}\right) N_{\mathbf{k}^{\prime}}} & =e^{i \int d^{3} \mathbf{k}^{\prime} \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \alpha\left(\mathbf{k}^{\prime}\right) N_{\mathbf{k}^{\prime}}} a_{\mathbf{k}} e^{-i \int d^{3} \mathbf{k}^{\prime} \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \alpha\left(\mathbf{k}^{\prime}\right) N_{\mathbf{k}^{\prime}}} \\
& =e^{i \alpha(\mathbf{k}) N_{\mathbf{k}}} a_{\mathbf{k}} e^{-i \alpha(\mathbf{k}) N_{\mathbf{k}}}=e^{-i \alpha(\mathbf{k})} a_{\mathbf{k}} \tag{5}
\end{align*}
$$

In the first equality, we use that the 2 sets of operators $\left\{\alpha_{\mathbf{k}}, \alpha_{\mathbf{k}}^{\dagger}, N_{\mathbf{k}}\right\}$ and $\left\{\alpha_{\mathbf{k}^{\prime}}, \alpha_{\mathbf{k}^{\prime}}^{\dagger}, N_{\mathbf{k}^{\prime}}\right\}$ commute with each other for $\mathbf{k} \neq \mathbf{k}^{\prime}$. This allows us to move all but the $\mathbf{k}^{\prime}=\mathbf{k}$ exponentials on the left-hand side past the $a_{\mathbf{k}}$ factor, where it cancels out with the exponentials on the right. Note that for this, it is essential that $\alpha\left(\mathbf{k}^{\prime}\right)$ is a real-valued function. The last equality follows from the instance of the BCH formula derived above. In the same way, we have that

$$
\begin{equation*}
e^{i \int d^{3} \mathbf{k}^{\prime} \alpha\left(\mathbf{k}^{\prime}\right) N_{\mathbf{k}^{\prime}}} a_{\mathbf{k}}^{\dagger} e^{-i \int d^{3} \mathbf{k}^{\prime} \alpha\left(\mathbf{k}^{\prime}\right) N_{\mathbf{k}^{\prime}}}=e^{i \alpha(\mathbf{k})} a_{\mathbf{k}}^{\dagger} \tag{6}
\end{equation*}
$$

Using our expressions for H and P^{i} in part (a) and (b), identities (5)-(6) allow us to compute

$$
\begin{aligned}
e^{i\left(H t-P^{i} x^{i}\right)} a_{\mathbf{k}} e^{-i\left(H t-P^{i} x^{i}\right)} & =e^{i \int d^{3} \mathbf{k}^{\prime}\left(\omega_{\mathbf{k}^{\prime}} t-\mathbf{k}^{\prime} \cdot \mathbf{x}\right) N_{\mathbf{k}^{\prime}}+i E_{0} t} a_{\mathbf{k}} e^{-i \int d^{3} \mathbf{k}^{\prime}\left(\omega_{\mathbf{k}^{\prime}} t-\mathbf{k}^{\prime} \cdot \mathbf{x}\right) N_{\mathbf{k}^{\prime}}-i E_{0} t} \\
& =e^{i \int d^{3} \mathbf{k}^{\prime}\left(\omega_{\mathbf{k}^{\prime}} t-\mathbf{k}^{\prime} \cdot \mathbf{x}\right) N_{\mathbf{k}^{\prime}}} a_{\mathbf{k}} e^{-i \int d^{3} \mathbf{k}^{\prime}\left(\omega_{\mathbf{k}^{\prime}} t-\mathbf{k}^{\prime} \cdot \mathbf{x}\right) N_{\mathbf{k}^{\prime}}}=e^{-i\left(\omega_{\mathbf{k}} t-\mathbf{k} \cdot \mathbf{x}\right)} a_{\mathbf{k}} \\
e^{i\left(H t-P^{i} x^{i}\right)} a_{\mathbf{k}}^{\dagger} e^{-i\left(H t-P^{i} x^{i}\right)} & =e^{i \int d^{3} \mathbf{k}^{\prime}\left(\omega_{\mathbf{k}^{\prime}} t-\mathbf{k}^{\prime} \cdot \mathbf{x}\right) N_{\mathbf{k}^{\prime}}} a_{\mathbf{k}}^{\dagger} e^{-i \int d^{3} \mathbf{k}^{\prime}\left(\omega_{\mathbf{k}^{\prime}} t-\mathbf{k}^{\prime} \cdot \mathbf{x}\right) N_{\mathbf{k}^{\prime}}}=e^{i\left(\omega_{\mathbf{k}} t-\mathbf{k} \cdot \mathbf{x}\right)} a_{\mathbf{k}}^{\dagger}
\end{aligned}
$$

Finally, we get

$$
\begin{aligned}
e^{i\left(H t-P^{i} x^{i}\right)} \phi(0,0) e^{-i\left(H t-P^{i} x^{i}\right)} & =\int \frac{d^{3} \mathbf{k}}{\sqrt{2 \omega_{\mathbf{k}}}} e^{i\left(H t-P^{i} x^{i}\right)}\left(a_{\mathbf{k}}+a_{\mathbf{k}}^{\dagger}\right) e^{-i\left(H t-P^{i} x^{i}\right)} \\
& =\int \frac{d^{3} \mathbf{k}}{\sqrt{2 \omega_{\mathbf{k}}}}\left(a_{\mathbf{k}} e^{-i\left(\omega_{\mathbf{k}} t-\mathbf{k} \cdot \mathbf{x}\right)}+a_{\mathbf{k}}^{\dagger} e^{i\left(\omega_{\mathbf{k}} t-\mathbf{k} \cdot \mathbf{x}\right)}\right)=\phi(\mathbf{x}, t)
\end{aligned}
$$

Question 4: Noether charges for Lorentz symmetries of a real scalar (20 points +10 bonus) In this problem we work out the conserved currents corresponding to the Lorentz symmetries of a real scalar theory,

$$
\mathcal{L}=-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}
$$

(a) Consider an infinitesimal Lorentz transformation

$$
\Lambda_{\mu}{ }^{\nu}=\delta_{\mu}{ }^{\nu}+\omega_{\mu}{ }^{\nu}
$$

where $\omega_{\mu \nu}=-\omega_{\nu \mu}$ are infinitesimal numbers. Show that this satisfies

$$
\Lambda_{\mu}{ }^{\rho} \eta_{\rho \lambda} \Lambda_{\nu}{ }^{\lambda}=\eta_{\mu \nu}
$$

to first order in $\omega_{\mu \nu}$, so this does give a Lorentz transformation.
We compute:

$$
\begin{aligned}
\Lambda_{\mu}{ }^{\rho} \eta_{\rho \lambda} \Lambda_{\nu}{ }^{\lambda} & =\left(\delta_{\mu}{ }^{\rho}+\omega_{\mu}{ }^{\rho}\right) \eta_{\rho \lambda}\left(\delta_{\nu}{ }^{\lambda}+\omega_{\nu}{ }^{\lambda}\right)=\left(\eta_{\mu \lambda}+\omega_{\mu \lambda}\right)\left(\delta^{\lambda}{ }_{\nu}-\omega^{\lambda}{ }_{\nu}\right) \\
& =\eta_{\mu \nu}+\omega_{\mu \nu}-\omega_{\mu \nu}+\omega_{\mu \lambda} \omega^{\lambda}{ }_{\mu}=\eta_{\mu \nu}+\mathcal{O}\left(\omega^{2}\right)
\end{aligned}
$$

(b) Write down how ϕ transforms under an infinitesimal Lorentz transformation, and show that the conserved Noether current for this transformation can be written as

$$
J^{\mu \lambda \nu}=x^{\lambda} T^{\mu \nu}-x^{\nu} T^{\mu \lambda}
$$

where $T^{\mu \nu}$ is the conserved energy-momentum tensor derived in problem set 1.
A Lorentz scalar field transforms in a way obeying $\phi^{\prime}\left(x^{\prime}\right)=\phi(x)$. Therefore, under an infinitesimal Lorentz transformation, the scalar field ϕ transforms as

$$
\delta \phi=\phi^{\prime}(x)-\phi(x)=\phi\left(\left(\Lambda^{-1}\right)^{\mu}{ }_{\nu} x^{\nu}\right)-\phi\left(x^{\nu}\right)=\phi\left(\left(\delta^{\mu}{ }_{\nu}-\omega^{\mu}{ }_{\nu}\right) x^{\nu}\right)-\phi\left(x^{\nu}\right)=-\omega^{\mu}{ }_{\nu} x^{\nu} \partial_{\mu} \phi
$$

where in the last equality we Taylor expand $\phi\left(x^{\mu}-\omega^{\mu}{ }_{\nu} x^{\nu}\right)=-\omega^{\mu}{ }_{\nu} x^{\nu} \partial_{\mu} \phi$.
Using this, the Lagrangian density transforms as

$$
\delta \mathcal{L}=\mathcal{L}\left[\phi^{\prime}\right]-\mathcal{L}[\phi]=\mathcal{L}\left[\phi-\omega^{\lambda}{ }_{\nu} x^{\nu} \partial_{\lambda} \phi\right]-\mathcal{L}[\phi]=-\omega^{\lambda}{ }_{\nu} x^{\nu} \partial_{\lambda} \phi \frac{\partial \mathcal{L}}{\partial \phi}=-\omega^{\lambda}{ }_{\nu} x^{\nu} \partial_{\lambda} \mathcal{L}=-\partial_{\lambda}\left(\omega^{\lambda}{ }_{\nu} x^{\nu} \mathcal{L}\right)
$$

We expand only to first order in ω. In the final equality, we use that $\omega_{\mu \nu}$ is antisymmetric, i.e.

$$
\partial_{\lambda}\left(\omega^{\lambda}{ }_{\nu} x^{\nu} f(x)\right)=\omega^{\lambda}{ }_{\nu} \delta_{\lambda}^{\nu} f(x)+\omega^{\lambda}{ }_{\nu} x^{\nu} \partial_{\lambda} f(x)=\omega^{\lambda}{ }_{\lambda} f(x)+\omega^{\lambda}{ }_{\nu} x^{\nu} \partial_{\lambda} f(x)=\omega^{\lambda}{ }_{\nu} x^{\nu} \partial_{\lambda} f(x)
$$

Hence, $\delta \mathcal{L}=\partial_{\mu} \mathcal{F}^{\mu}$, for $\mathcal{F}^{\mu}=-\omega^{\mu}{ }_{\nu} x^{\nu} \mathcal{L}$
The Noether current for the transformation parameterized by $\omega_{\lambda \nu}$ is given by

$$
\begin{aligned}
j^{\mu} & =-\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta \phi-\mathcal{F}^{\mu}=\omega^{\lambda}{ }_{\nu} x^{\nu} \partial^{\mu} \phi \partial_{\lambda} \phi+\omega^{\mu}{ }_{\nu} x^{\nu} \mathcal{L} \\
& =\omega_{\lambda \nu} x^{\nu}\left(\partial^{\mu} \phi \partial^{\lambda} \phi+\eta^{\mu \lambda} \mathcal{L}\right)=\omega_{\lambda \nu} x^{\nu} T^{\mu \lambda}
\end{aligned}
$$

for the energy-momentum tensor from problem set 1 (now with a real scalar):

$$
T^{\mu \nu}=\partial^{\mu} \phi \partial^{\nu} \phi+\eta^{\mu \nu} \mathcal{L}=\partial^{\mu} \phi \partial^{\nu} \phi-\frac{1}{2} \eta^{\mu \nu}\left(\partial_{\rho} \phi \partial^{\rho} \phi+m^{2} \phi^{2}\right)
$$

Note that $\omega_{\lambda \nu}$ is an arbitrary antisymmetric tensor which parameterizes our infinitesimal transformation. In total we have an antisymmetric tensor worth of conserved currents, which we can package in $J^{\mu \lambda \nu}$:

$$
J^{\mu \lambda \nu}=x^{\lambda} T^{\mu \nu}-x^{\nu} T^{\mu \lambda}, \quad j^{\mu}=-\frac{1}{2} \omega_{\lambda \nu} J^{\mu \lambda \nu}
$$

In writing $J^{\mu \lambda \nu}$ we have made the antisymmetry in λ and ν manifest by explicitly antisymmetrizing over these indices.
(c) Using conservation of the energy-momentum tensor, verify that the current in (b) is conserved, i.e.

$$
\partial_{\mu} J^{\mu \lambda \nu}=0
$$

We compute:

$$
\begin{aligned}
\partial_{\mu} J^{\mu \lambda \nu} & =\partial_{\mu}\left(x^{\lambda} T^{\mu \nu}-x^{\nu} T^{\mu \lambda}\right)=\delta_{\mu}^{\lambda} T^{\mu \nu}+x^{\lambda} \partial_{\mu} T^{\mu \nu}-\delta_{\mu}^{\nu} T^{\mu \lambda}-x^{\nu} \partial_{\mu} T^{\mu \lambda} \\
& =T^{\lambda \nu}-T^{\nu \lambda}=0
\end{aligned}
$$

In the 3 rd equality we used the conservation law $\partial_{\mu} T^{\mu \nu}=0$, and in the 4 th equality we used from problem set 1 that $T^{\mu \nu}=T^{\nu \mu}$ is symmetric.
(d) (Bonus problem) Consider the conserved charges associated with $J^{\mu \lambda \nu}$,

$$
M^{\lambda \nu}=\int d^{3} x J^{0 \lambda \nu}
$$

Express the conserved charges $M^{\mu \nu}$ for the Lorentz symmetries of this theory in terms of $a_{\mathbf{k}}$ and $a_{\mathbf{k}}^{\dagger}$. From part (b), we have

$$
M^{\mu \nu}=\int d^{3} x J^{0 \mu \nu}=\int d^{3} x\left(x^{\mu} T^{0 \nu}-x^{\nu} T^{0 \mu}\right)
$$

This is antisymmetric in μ and ν, so we need to compute $M^{0 i}$ and $M^{i j}$. To do this, we need to expand $T^{0 \mu}$ in terms of creation and annihilation operators:

$$
\begin{aligned}
T^{0 \mu} & =-\pi \partial^{\mu} \phi-\frac{1}{2} \eta^{0 \mu}\left(-\pi^{2}+(\nabla \phi)^{2}+m^{2} \phi^{2}\right) \\
& =\left(\frac{1}{2}\left(\pi^{2}+(\nabla \phi)^{2}+m^{2} \phi^{2}\right),-\pi \partial^{i} \phi\right)=\left(\mathcal{H}(x), \mathcal{P}^{i}(x)\right)
\end{aligned}
$$

Since $M^{\mu \nu}$ are conserved currents, we can compute them at $t=0$.
First, we need the identity

$$
\begin{align*}
\int d^{3} \mathbf{x} x^{i} f(\mathbf{x}) g(\mathbf{x}) & =\int d^{3} \mathbf{x} d^{3} \mathbf{k} d^{3} \mathbf{k}^{\prime} e^{i\left(\mathbf{k}+\mathbf{k}^{\prime}\right) \cdot \mathbf{x}} x^{i} f(\mathbf{k}) g\left(\mathbf{k}^{\prime}\right) \\
& =\frac{1}{(2 \pi)^{3}} \int d^{3} \mathbf{k} d^{3} \mathbf{k}^{\prime}\left(-i \partial_{k_{i}} \delta^{(3)}\left(\mathbf{k}+\mathbf{k}^{\prime}\right)\right) f(\mathbf{k}) g\left(\mathbf{k}^{\prime}\right)=i \int d^{3} \mathbf{k} \partial_{k_{i}} f(\mathbf{k}) g(-\mathbf{k}) \tag{7}
\end{align*}
$$

where we have used integration by parts in the last equality. More generally if there are derivatives acting on f or g, each derivative acting on f drags down a factor of $i \mathbf{k}$, while each derivative actin on g drags down a factor of $i \mathbf{k}^{\prime}$, which becomes $-i \mathbf{k}$ after performing the $d^{3} \mathbf{x}$ integral.

Now we are ready to compute

$$
\begin{aligned}
M^{0 i}= & \left.\int d^{3} \mathbf{x}\left(t \mathcal{P}^{i}(x)-x^{i} \mathcal{H}(x)\right)\right|_{t=0}=-\frac{1}{2} \int d^{3} \mathbf{x} x^{i}\left(\pi^{2}+(\nabla \phi)^{2}+m^{2} \phi^{2}\right) \\
= & -\frac{i}{2} \int d^{3} \mathbf{k}\left(\partial_{k_{i}} \pi(\mathbf{k}) \pi(-\mathbf{k})+\omega_{\mathbf{k}}^{2} \partial_{k_{i}} \phi(\mathbf{k}) \phi(-\mathbf{k})\right) \\
= & -\frac{i}{4} \int d^{3} \mathbf{k}\left(-\partial_{k_{i}}\left(\sqrt{\omega_{\mathbf{k}}}\left(a_{\mathbf{k}}-a_{-\mathbf{k}}^{\dagger}\right)\right) \cdot\left(\sqrt{\omega_{\mathbf{k}}}\left(a_{-\mathbf{k}}-a_{\mathbf{k}}^{\dagger}\right)\right)\right. \\
& \left.\quad+\omega_{\mathbf{k}}^{2} \partial_{k_{i}}\left(\frac{1}{\sqrt{\omega_{\mathbf{k}}}}\left(a_{\mathbf{k}}+a_{-\mathbf{k}}^{\dagger}\right)\right) \cdot\left(\frac{1}{\sqrt{\omega_{\mathbf{k}}}}\left(a_{-\mathbf{k}}+a_{\mathbf{k}}^{\dagger}\right)\right)\right) \\
= & +\frac{i}{4} \int d^{3} \mathbf{k}\left(\left(k^{i}+\omega_{\mathbf{k}} \partial_{k_{i}}\right)\left(a_{\mathbf{k}}-a_{-\mathbf{k}}^{\dagger}\right) \cdot\left(a_{-\mathbf{k}}-a_{\mathbf{k}}^{\dagger}\right)+\left(k^{i}-\omega_{\mathbf{k}} \partial_{k_{i}}\right)\left(a_{\mathbf{k}}+a_{-\mathbf{k}}^{\dagger}\right) \cdot\left(a_{-\mathbf{k}}+a_{\mathbf{k}}^{\dagger}\right)\right) \\
=- & \frac{i}{2} \int d^{3} \mathbf{k} \omega_{\mathbf{k}}\left(\left(\partial_{k_{i}} a_{\mathbf{k}}\right) a_{\mathbf{k}}^{\dagger}+\left(\partial_{k_{i}} a_{-\mathbf{k}}^{\dagger}\right) a_{-\mathbf{k}}\right)=-\frac{i}{2} \int d^{3} \mathbf{k} \omega_{\mathbf{k}}\left(\left(\partial_{k_{i}} a_{\mathbf{k}}\right) a_{\mathbf{k}}^{\dagger}-\left(\partial_{k_{i}} a_{\mathbf{k}}^{\dagger}\right) a_{\mathbf{k}}\right) \\
=- & \frac{i}{2} \int d^{3} \mathbf{k} \omega_{\mathbf{k}}\left(a_{\mathbf{k}}^{\dagger}\left(\partial_{k_{i}} a_{\mathbf{k}}\right)+\left.(2 \pi)^{3} \partial_{k_{i}} \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right)\right|_{\mathbf{k}^{\prime}=\mathbf{k}}-\left(\partial_{k_{i}} a_{\mathbf{k}}^{\dagger}\right) a_{\mathbf{k}}\right) \\
= & -\frac{i}{2} \int d^{3} \mathbf{k} \omega_{\mathbf{k}}\left(a_{\mathbf{k}}^{\dagger}\left(\partial_{k_{i}} a_{\mathbf{k}}\right)-\left(\partial_{k_{i}} a_{\mathbf{k}}^{\dagger}\right) a_{\mathbf{k}}\right)
\end{aligned}
$$

Line 2 follows from identity (7). Line 5 is obtained by noting that all but 2 terms in the integrand of line 4 either cancel out or are odd. In line 6 we use the identity obtained by taking the \mathbf{k}-derivative of $\left[a_{\mathbf{k}}, a_{\mathbf{k}^{\prime}}^{\dagger}\right]=(2 \pi)^{3} \delta^{(3)}\left(\mathbf{k}-\mathbf{k}^{\prime}\right)$, and evaluating at $\mathbf{k}^{\prime}=\mathbf{k}$. Finally, to reach line 7 we use that the $\delta^{(3)}$-term in line 6 is odd.

In a similar way, we can also compute for $i \neq j$ (since $M^{i i}=0$ by asymmetry)

$$
\begin{aligned}
M^{i j} & =\int d^{3} \mathbf{x}\left(x^{i} \mathcal{P}^{j}(x)-x^{j} \mathcal{P}^{i}(x)\right)=-\int d^{3} \mathbf{x}\left(x^{i} \pi \partial^{j} \phi-x^{j} \pi \partial^{i} \phi\right) \\
& =\frac{1}{2} \int d^{3} \mathbf{k}\left(k^{j} \pi(\mathbf{k}) \partial_{k_{i}} \phi(-\mathbf{k})-(i \leftrightarrow j)\right) \\
& =-\frac{i}{4} \int d^{3} \mathbf{k}\left(k^{j} \sqrt{\omega_{\mathbf{k}}}\left(a_{\mathbf{k}}-a_{-\mathbf{k}}^{\dagger}\right) \cdot \partial_{k_{i}}\left(\frac{1}{\sqrt{\omega_{\mathbf{k}}}}\left(a_{-\mathbf{k}}+a_{\mathbf{k}}^{\dagger}\right)\right)-(i \leftrightarrow j)\right) \\
& =-\frac{i}{4} \int d^{3} \mathbf{k}\left(k^{j}\left(a_{\mathbf{k}}-a_{-\mathbf{k}}^{\dagger}\right) \cdot\left(-\frac{k^{i}}{\omega_{\mathbf{k}}}+\partial_{k_{i}}\right)\left(a_{-\mathbf{k}}+a_{\mathbf{k}}^{\dagger}\right)-(i \leftrightarrow j)\right) \\
& =-\frac{i}{4} \int d^{3} \mathbf{k} k^{j}\left(a_{\mathbf{k}} \partial_{k_{i}} a_{-\mathbf{k}}+a_{\mathbf{k}} \partial_{k_{i}} a_{\mathbf{k}}^{\dagger}-a_{-\mathbf{k}}^{\dagger} \partial_{k_{i}} a_{-\mathbf{k}}-a_{-\mathbf{k}}^{\dagger} \partial_{k_{i}} a_{\mathbf{k}}^{\dagger}\right)-(i \leftrightarrow j) \\
& =-\frac{i}{4} \int d^{3} \mathbf{k} k^{j}\left(a_{\mathbf{k}} \partial_{k_{i}} a_{\mathbf{k}}^{\dagger}-a_{-\mathbf{k}}^{\dagger} \partial_{k_{i}} a_{-\mathbf{k}}\right)-(i \leftrightarrow j) \\
& =-\frac{i}{4} \int d^{3} \mathbf{k} k^{j}\left(-\left(\partial_{k_{i}} a_{\mathbf{k}}\right) a_{\mathbf{k}}^{\dagger}-a_{\mathbf{k}}^{\dagger}\left(\partial_{k_{i}} a_{\mathbf{k}}\right)\right)-(i \leftrightarrow j) \\
& =-\frac{i}{4} \int d^{3} \mathbf{k} k^{j}\left(\left.(2 \pi)^{3} \partial_{k_{i}} \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right)\right|_{\mathbf{k}^{\prime}=\mathbf{k}}-2 a_{\mathbf{k}}^{\dagger}\left(\partial_{k_{i}} a_{\mathbf{k}}\right)\right)-(i \leftrightarrow j) \\
& =-\frac{i}{2} \int d^{3} \mathbf{k}\left(k^{i} a_{\mathbf{k}}^{\dagger}\left(\partial_{k_{j}} a_{\mathbf{k}}\right)-k^{j}\left(\partial_{k_{i}} a_{\mathbf{k}}^{\dagger}\right) a_{\mathbf{k}}\right)
\end{aligned}
$$

where we make ample use of integration by parts, drop total-derivative terms, and use $i \neq j$ to completely ignore having to deal with $\propto \partial_{k_{i}} k^{j}$ terms.

Physically, the conserved quantities are the center of mass velocities $M^{0 i}$ and angular momenta $M^{i j}$.

Altogether, we may write

$$
M^{\mu \nu}=-\frac{i}{2} \int d^{3} \mathbf{k} k^{\mu}\left(a_{\mathbf{k}}^{\dagger} \partial_{k_{\nu}} a_{\mathbf{k}}-\partial_{k_{\nu}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}\right)-(\mu \rightarrow \nu), \quad k^{0}=\omega_{\mathbf{k}}
$$

MIT OpenCourseWare
https://ocw.mit.edu

8.323 Relativistic Quantum Field Theory I

Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

