
8.323 Problem Set 5 Solutions

March 14, 2023

Question 1: A Useful Formula, and the Path Integral in Phase Space (20 points)
(a) Derive the following equations:〈
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∣∣∣∣e−i p̂2

2m
∆te−i∆tV (x̂)

∣∣∣∣xi〉 =

∫
d̄pi exp
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−i∆t p

2
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]
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√
m
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2

(
xi+1 − xi
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)2

− i∆tV (xi)

]

We start by deriving the first equation:〈
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∣∣∣∣e−i p̂2

2m
∆te−i∆tV (x̂)

∣∣∣∣xi〉 =

∫
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dpie
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p2i
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∫
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∫
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2
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2m
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]
To get the second equation from this, we complete the square and compute the Gaussian integral, or
equivalently use the identity

∫
dxe−ax2+bx =

√
π
ae

b2/4a. Hence,〈
xi+1

∣∣∣∣e−i p̂2

2m
∆te−i∆tV (x̂)

∣∣∣∣xi〉 =
1
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2

(
xi+1 − xi
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)2

− i∆tV (xi)
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(b) Use the first equation in (a) to derive the following:

⟨xa, ta|xb, tb⟩ =
∫ x(ta)=xa

x(tb)=xb

Dx(t)Dp(t) exp

[
i

∫ t

t′
dt(pẋ−H)

]
The integration in this expression should be understood as∫ x(ta)=xa

x(tb)=xb

Dx(t)Dp(t) = lim
N→∞

∫
dp0
2π

∫
dx1dp1
2π

· · ·
∫
dxN−1dpN−1

2π

where we again divide the interval [tb, ta] into N segments, with t0 = tb, tN = ta.
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We denote the left-hand side of the equation in (a) by Mi. Now we do the same trick from class to derive
the path-integral:

⟨xa, ta|xb, tb⟩ = ⟨xa|e−iĤ(ta−tb)|xb⟩ = ⟨xa|(e−iĤ∆t)N |xb⟩

=

∫
dx1 · · · dxN−1⟨xa|e−iĤ∆t|xN−1⟩⟨xN−1| · · · |x1⟩⟨x1|e−iĤ∆t|xb⟩

=

∫
dx1 · · · dxN−1MN−1 · · ·M0

=

∫
dx1 · · · dxN−1d̄p0 · · · d̄pN−1

N−1∏
i=0

exp

[
−i∆t p

2
i

2m
− i∆tV (xi) + ipi(xi+1 − xi)

]

=

∫ x(ta)=xa

x(tb)=xb

Dx(t)Dp(t) exp

[
i

N−1∑
i=0

∆t

(
pi
xi+1 − xi

∆t
− p2i

2m
− V (xi)

)]

=

∫ x(ta)=xa

x(tb)=xb

Dx(t)Dp(t) exp

[
i

∫ ta

tb

dt(pẋ−H)

]
In the second line we insert the identity N − 1 times, so that we can use the formula from (a) for each
matrix element in the 4th line. In the 5th line the product of exponentials becomes a sum of exponents,
which in the continuum case reduces to the integral in the last line.
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Question 2: The Schrödinger Equation, Rederived (20 points)
The wavefunction ψ(t, x) for a system at time t can be obtained from that at time t′ by

ψ(t, x) =

∫
dx′K(x, t;x′, t′)ψ(x′, t′)

for the propagator given by

K(x, t;x′, t′) = ⟨x, t|x′, t′⟩ =
∫ x(ta)=xa

x(tb)=xb

Dx(t) exp

[
i

∫ t

t′
dtL(ẋ, x)

]
Show that ψ(t, x) satisfies the Schrödinger equation,

i∂tψ(t, x) = − 1

2m
∂2xψ(t, x) + V (x)ψ(t, x)

We therefore consider the wavefunction after an infinitesimal time step δt:

ψ(t+ δt, x) =

∫
dyK(t+ δt, x; t, y)ψ(t, y)

Equating both sides of this equation to order δ will lead to the Schrödinger equation.
The left hand side is simple:

LHS = ψ(t+ δt, x) = ψ(t, x) + δt∂tψ(t, x) +O(δt2)

To expand the right hand side, note for an infinitesimal δt that the propagator K(t + δt, x; t, y) can be
written as a single infinitesimal time step:

K(t+ δt, x; t, y) =
( m

2πiδt

)1/2
exp

[
iδt

(
m

2

(
x− y

δt

)2

− V (y)

)]

Therefore we expand:

RHS =

∫
dyK(t+ δt, x; t, y)ψ(t, y)

=
( m

2πiδt

)1/2 ∫
dye

iδt
(

m
2 (

x−y
δt )

2−V (y)
)
ψ(t, y)

=
( m
2πi

)1/2 ∫
duei(

m
2
u2−δtV (x+u

√
δt))ψ(t, x+ u

√
δt)

=
( m
2πi

)1/2 ∫
duei

m
2
u2
(1− δtV (x))

(
ψ(t, x) +

√
δt∂xψ(t, x)u+

δt

2
∂2xψ(t, u)u2

)
+O(δt2)

= ψ(t, x) + δt

(
−iV (x)ψ(t, x) +

i

2m
∂2xψ(t, x)

)
+O(δt2)

In the third line we have made the substitution u
√
δt = y − x, and in the 4th line we expand each term

to order δt, neglecting higher order terms. In the subsequent line we perform the Gaussian integrals over
u, noting that the order (δt)1/2 term becauyse the integral is odd.

Setting the 2 sides equal, we have the Schrödinger equation as desired:

i∂tψ(t, x) =

(
− 1

2m
∂2x + V (x)

)
ψ(t, x)
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Question 3: The Free Particle (20 points)
For a free particle, i.e. V (x) = 0, perform explicitly the integrals over xi, i = 1, . . . , N − 1 to show that

K(xa, ta;xb, tb) =

(
m

2πi(ta − tb)

)1/2

exp

[
im(xa − xb)

2

2(ta − tb)

]
We evaluate the integrals in order, starting with the one over x1. We denote x0 = xb and xN = xa.

K(xa, ta;xb, tb) = lim
N→∞

( m

2πi∆t

)N/2
∫
dx1 · · · dxN−1e

i m
2∆t

((xN−xN−1)
2+···+(x2−x1)2+(x1−x0)2)

= lim
N→∞

( m

2πi∆t

)N/2
(
iπ∆t

m

)1/2 ∫
dx2 · · · dxN−1e

i m
2∆t

((xN−xN−1)
2+···+(x3−x2)2+

1
2
(x2−x0)2)

= lim
N→∞

( m

2πi∆t

)N−1
2 1√

2

∫
dx2 · · · dxN−1e

i m
2∆t

((xN−xN−1)
2+···+(x3−x2)2+

1
2
(x2−x0)2)

= lim
N→∞

( m

2πi∆t

)N−1
2 2√

2

(
iπ∆t

3m

)1/2 ∫
dx3 · · · dxN−1e

i m
2∆t

((xN−xN−1)
2+···+ 1

3
(x3−x0)2)

= lim
N→∞

( m

2πi∆t

)N−2
2 1√

3

∫
dx3 · · · dxN−1e

i m
2∆t

((xN−xN−1)
2+···+(x4−x3)2+

1
3
(x3−x0)2)

= · · · = lim
N→∞

( m

2πiN∆t

)1/2
ei

m
2N∆t

(xa−xb)
2

=

√
m

2πiN(ta − tb)
e
im
2

(xa−xb)
2

ta−tb
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Question 4: The Path Integral for a Free Particle, Revisited (20 points)
In this problem we evaluate the path integral for a free particle using a different method than Problem
3. For simplicity, take xa = xb = 0, tb = 0, ta = T . As discussed in class, K is a Gaussian path-integral of
form:

K(0, T ; 0, 0) =

∫ x(T )=0

x(0)=0
Dx(t) exp

[
i

2

∫
dtdt′x(t)A(t, t′)x(t′)

]
for some differential operator A.
(a) Write down the explicit expression for A.
The action for a free particle is given by

S[x(t)] =

∫
dt
m

2
∂tx∂tx = −m

2

∫
dtx∂2t x = −m

2

∫
dtdt′x(t′)δ(t− t′)∂2t x(t)

=
1

2

∫
dtdt′x(t′)A(t′, t)x(t), A(t′, t) = −mδ(t− t′)∂2t

Then, we write the propagator as

K(0, T ; 0, 0) =

∫ x(T )=0

x(0)=0
DxeiS =

∫ x(T )=0

x(0)=0
Dx exp

[
i

2

∫ T

0
dtdt′x(t′)A(t′, t)x(t)

]
for the differential operator A(t′, t) = −mδ(t− t)∂2t .

(b) Find all the eigenvalues of A. Show that the determinant of A can be written as

detA =
∞∏
n=1

m
n2π2

T 2

The eigenvectors of a second order derivative operator are precisely exponentials, x(t) = fλ(t) = eiλt. We
further need our eigenvectors to satisfy the boundary conditions x(0) = x(T ) = 0, since the endpoints of
our trajectory are fixed. Hence, a complete set of eigenvectors are given by sine functions, with momenta
integer multiples of π/T . Without loss of generality we can restrict to n > 0.

fλn(t) =

√
2

T
sin

(
nπt

T

)
Furthermore,∫

dtA(t′, t)fλn(t) = −m
∫
dtδ(t− t′)

√
2

T
∂2t sin

(
nπt

T

)
= m

n2π2

T 2

√
2

T
sin

(
nπt

T

)
= λnfλn(t)

for the eigenvalue λn = mn2π2

T 2 . In this basis A is diagonal: Amn = mn2π2

T 2 δnm. Finally, the determinant
of an operator is obtained by multiplying all of its eigenvalues, giving us the desired expression:

detA =
∞∏
n=1

m
n2π2

T 2

(c) Since our propagator is Gaussian, it can be evaluated as

K(0, T ; 0, 0) =
C√
detA
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where C is some constant. By comparing this equation with the solution to Problem 3, show that the
consistency of the 2 approaches requires

C√
detA

=
( m

2πiT

)1/2
We substitute xa = xb = 0, ta = T, tb = 0 into the result in Problem 3:

K(0, T ; 0, 0) =
( m

2πiT

)1/2
exp

[
im02

2T

]
=
( m

2πiT

)1/2
It therefore follows immediately from our work in (b) that

K(0, T ; 0, 0) =
( m

2πiT

)1/2
=

C√
detA

=
CT

π
√
m

∞∏
n=1

1

n
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