8.323 Problem Set 6 Solutions

March 21, 2023

Question 1: Particle Production by an External Source, Continued (10 points)
Consider again Problem 2 of Problem Set 4. Introduce

$$
Z[J]=\int D \phi e^{i \int d^{4} x \mathcal{L}}, \quad Z_{0}=Z[J=0]=\int D \phi e^{i \int d^{4} x \mathcal{L}_{0}}
$$

for the Lagrangian:

$$
\mathcal{L}=-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}+J(x) \phi=\mathcal{L}_{0}+J(x) \phi
$$

We can show that, with an appropriate $i \epsilon$ prescription,

$$
\langle 0,+\infty \mid 0 .-\infty\rangle=\frac{Z[J]}{Z_{0}}
$$

Use this to find the probability of no particle production

$$
P_{0}=|\langle 0,+\infty \mid 0,-\infty\rangle|^{2}
$$

by directly evaluating the path integral. You should reproduce your answer in 2(h) of Problem Set 4. We compute:

$$
\begin{aligned}
Z[J] & =\int D \phi e^{i \int d^{4} x\left(\mathcal{L}_{0}+J \phi\right)} \\
& =\int D \phi \exp \left[-\frac{i}{2} \int d^{4} p\left(\phi^{\dagger}(p)\left(p^{2}+m^{2}-i \epsilon\right) \phi(p)-J^{\dagger}(p) \phi(p)-J(p) \phi^{\dagger}(p)\right)\right] \\
& =Z_{0} \exp \left[\frac{i}{2} \int d^{4} p \frac{|J(p)|^{2}}{p^{2}+m^{2}-i \epsilon}\right]
\end{aligned}
$$

In the last line, we complete the square and perform a linear shift of ϕ, ϕ^{\dagger}. Therefore,

$$
\begin{aligned}
P_{0}=\left|\frac{Z[J]}{Z[0]}\right|^{2} & =\exp \left[i \int d^{4} p|J(p)|^{2} \operatorname{Im} \frac{1}{p^{2}+m^{2}-i \epsilon}\right] \\
& =\exp \left[-\pi \int d^{4} p|J(p)|^{2} \delta\left(p^{2}+m^{2}\right)\right] \\
& =\exp \left[-\pi \int d^{4} p|J(p)|^{2} \frac{1}{2 \omega_{\mathbf{p}}}\left(\delta\left(p^{0}-\omega_{\mathbf{p}}\right)+\delta\left(p^{0}+\omega_{\mathbf{p}}\right)\right)\right] \\
& =\exp \left[-\pi \int \frac{d^{3} \mathbf{p}}{2 \pi}\left(\left|J\left(\omega_{\mathbf{p}}, \mathbf{p}\right)\right|^{2}+\left|J\left(-\omega_{\mathbf{p}}, \mathbf{p}\right)\right|^{2}\right)\right] \\
& =\exp \left[-\int \frac{d^{3} \mathbf{p}}{2 \omega_{\mathbf{p}}}|J(p)|^{2}\right]=e^{-\lambda}
\end{aligned}
$$

In the line 1 , we use that $a-a^{*}=2 i \operatorname{Im}(a)$. In line 2 , we use the identity

$$
\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{x-i \epsilon}=\operatorname{PV}\left(\frac{1}{x}\right)+i \pi \delta(x)
$$

where PV is the Cauchy principal value. Line 3 uses the identity from Problem Set 1 that

$$
\delta\left(p^{2}+m^{2}\right)=\frac{1}{2 \omega_{\mathbf{p}}}\left(\delta\left(p^{0}-\omega_{\mathbf{p}}\right)+\delta\left(p^{0}+\omega_{\mathbf{p}}\right)\right)
$$

In line 4 we perform the p^{0} integral. Finally, in line 5 we use the invariance of the $\int d^{3} \mathbf{p}$ under $\mathbf{p} \rightarrow-\mathbf{p}$, along with $J(-p)=J^{*}(p)$ to show that the second term is equal to the first.

Question 2: Connected Diagrams (30 points)

Consider the $\lambda \phi^{4}$ theory discussed in lecture, with interaction Hamiltonian

$$
H_{I}=\frac{\lambda}{4!} \int d^{3} x \phi^{4}(x)
$$

(a) List all connected diagrams for

$$
\langle 0| \mathrm{T} \phi\left(x_{1}\right) \phi\left(x_{2}\right) e^{-i \int_{-\infty}^{\infty} d t H_{I}}|0\rangle
$$

to order $\mathcal{O}\left(\lambda^{2}\right)$, and give the symmetry factor for each diagram. For diagrams at orders $\mathcal{O}\left(\lambda^{0}\right)$ and $\mathcal{O}\left(\lambda^{1}\right)$, write down their expressions in both coordinate and momentum space.

Order	Diagram	S	Expressions
λ^{0}	$D_{1}^{(0)}$	1	$\begin{gathered} G_{F}^{0}\left(x_{1}-x_{2}\right) \\ (2 \pi)^{4} \delta^{(4)}\left(p_{1}-p_{2}\right) \frac{-i}{p_{1}^{2}+m^{2}-i \epsilon} \end{gathered}$
λ^{1}	$D_{1}^{(1)}$	2	$\begin{gathered} -\lambda \int d^{4} z G_{F}^{0}\left(x_{1}-z\right) G_{F}^{0}\left(x_{2}-z\right) G_{F}^{0}(0) \\ -i \lambda(2 \pi)^{4} \delta^{(4)}\left(p_{1}-p_{2}\right) \frac{-i}{p_{1}^{2}+m^{2}-i \epsilon} \frac{-i}{p_{2}^{2}+m^{2}-i \epsilon} \int d^{4} q \frac{-i}{q^{2}+m^{2}-i \epsilon} \end{gathered}$
λ^{2}	$D_{1}^{(2)}$	2×2	$\begin{gathered} (-i \lambda)^{2} \int d^{4} z_{1} d^{4} z_{2} G_{F}^{0}\left(x_{1}-z_{1}\right) G_{F}^{0}\left(x_{2}-z_{2}\right) G_{F}^{0}\left(z_{1}-z_{2}\right) G_{F}^{0}(0)^{2} \\ (-i \lambda)^{2} D_{1}^{(0)}\left(p_{1}, p_{2}\right) \frac{-i}{p_{1}^{2}+m^{2}-i \epsilon} \frac{-i}{p_{2}^{2}+m^{2}-i \epsilon}\left(\int d^{4} q \frac{-i}{q^{2}+m^{2}-i \epsilon}\right)^{2} \end{gathered}$
λ^{2}	$D_{2}^{(2)}$	2×2	$\begin{aligned} & (-i \lambda)^{2} \int d^{4} z_{1} d^{4} z_{2} G_{F}^{0}\left(x_{1}-z_{1}\right) G_{F}^{0}\left(x_{2}-z_{2}\right) G_{F}^{0}\left(z_{1}-z_{2}\right)^{2} G_{F}^{0}(0) \\ & (-i \lambda)^{2} D_{1}^{(0)}\left(p_{1}, p_{2}\right) \frac{-i}{p_{2}^{2}+m^{2}-i \epsilon} \int d^{4} q\left(\frac{-i}{q^{2}+m^{2}-i \epsilon}\right)^{2} \int d^{4} q \frac{-i}{q^{2}+m^{2}-i \epsilon} \end{aligned}$
λ^{2}	$D_{3}^{(2)}$	3 !	$\begin{gathered} (-i \lambda)^{2} \int d^{4} z_{1} d^{4} z_{2} G_{F}^{0}\left(x_{1}-z_{1}\right) G_{F}^{0}\left(x_{2}-z_{2}\right) G_{F}^{0}\left(z_{1}-z_{2}\right)^{3} \\ (-i \lambda)^{2} D_{1}^{(0)}\left(p_{1}, p_{2}\right) \frac{-i}{p_{2}^{2}+m^{2}-i \epsilon} \int d^{4} q_{1} d^{4} q_{2} \frac{-i}{q_{1}^{2}+m^{2}-i \epsilon} \frac{-i}{q_{2}^{2}+m^{2}-i \epsilon} \frac{-i}{\left(q_{1}+q+q^{\prime}\right)^{2}+m^{2}-i \epsilon} \end{gathered}$

The symmetry factors for the order λ^{2} diagrams are obtained as follows. $D_{1}^{(2)}$ receives a factor of 2 from each of the propagators starting and ending on the same point $\left(x_{1}\right.$ and $\left.x_{2}\right) . D_{2}^{(2)}$ has one factor of 2 from the propagator starting and ending on the same point, and another factor of 2 from the 2 identical propagators connecting x_{1} and $x_{2} . D_{3}^{(2)}$ has 3 ! from the 3 identical propagators connecting x_{1} and x_{2}.
(b) List all connected diagrams of the four-point function

$$
\left.G_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\lambda \Omega\left|\mathrm{T} \phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right| \Omega\right\rangle
$$

to order $\mathcal{O}\left(\lambda^{2}\right)$, and choose 2 to write down their expressions in coordinate and momentum space. Here we take all momenta to be ingoing, and use the shorthand $G_{F}^{0}(x-y)=: G_{x, y}^{0}$.

Order	Diagram	S	Expressions
λ^{1}	$D_{1}^{(0)}$	1	$\begin{aligned} & -i \lambda \int d^{4} z G_{F}^{0}\left(x_{1}-z\right) G_{F}^{0}\left(x_{2}-z\right) G_{F}^{0}\left(x_{3}-z\right) G_{F}^{0}\left(x_{4}-z\right) \\ & -i \lambda(2 \pi)^{4} \delta^{(4)}\left(\sum_{i} p_{i} \frac{-i}{p_{1}^{2}+m^{2}-i \epsilon} \frac{-i}{p_{2}^{2}+m^{2}-i \epsilon} \frac{-i}{p_{3}^{2}+m^{2}-i \epsilon} \frac{-i}{p_{4}^{2}+m^{2}-i \epsilon}\right. \end{aligned}$
λ^{2}	$\sum_{i=1}^{4} D_{i}^{(2)}$	2	$\begin{gathered} (-i \lambda)^{2} \int d^{4} z_{1} d^{4} z_{2} G_{x_{1}, z_{2}}^{0} G_{z_{1}, z_{2}}^{0} G_{0,0}^{0} G_{x_{2}, z_{1}}^{0} G_{x_{3}, z_{1}}^{0} G_{x_{4}, z_{1}}^{0}+\sum_{i=2}^{4}(1 \leftrightarrow i) \\ -i \lambda D_{1}^{(1)}\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \frac{-i}{p_{1}^{2}+m^{2}-i \epsilon} \int d^{4} q \frac{-i}{q^{2}+m^{2}-i \epsilon}+\sum_{i=2}^{4}(1 \leftrightarrow i) \end{gathered}$
λ^{2}	$D_{s}^{(2)}$	2	$\begin{aligned} & (-i \lambda)^{2} \int d^{4} z_{1} d^{4} z_{2} G_{x_{1}, z_{1}}^{0} G_{x_{2}, z_{1}}^{0}\left(G_{z_{1}, z_{2}}^{0}\right)^{2} G_{x_{3}, z_{2}}^{0} G_{x_{4}, z_{2}}^{0} \\ & -i \lambda D_{1}^{(1)}\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \int d^{4} q \frac{-i}{q^{2}+m^{2}-i \epsilon} \frac{-i}{\left(p_{1}+p_{2}-q\right)^{2}+m^{2}-i \epsilon} \end{aligned}$
λ^{2}	$D_{t}^{(2)}$	2	$\begin{aligned} & (-i \lambda)^{2} \int d^{4} z_{1} d^{4} z_{2} G_{x_{1}, z_{1}}^{0} G_{x_{3}, z_{1}}^{0}\left(G_{z_{1}, z_{2}}^{0}\right)^{2} G_{x_{2}, z_{2}}^{0} G_{x_{4}, z_{2}}^{0} \\ & -i \lambda D_{1}^{(1)}\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \int d^{4} q_{\frac{-i}{2}+m^{2}-i \epsilon} \frac{-i}{\left(p_{1}+p_{3}-q\right)^{2}+m^{2}-i \epsilon} \end{aligned}$
λ^{2}	$D_{u}^{(2)}$	2	$\begin{aligned} & (-i \lambda)^{2} \int d^{4} z_{1} d^{4} z_{2} G_{x_{1}, z_{1}}^{0} G_{x_{4}, z_{1}}^{0}\left(G_{z_{1}, z_{2}}^{0}\right)^{2} G_{x_{2}, z_{2}}^{0} G_{x_{3}, z_{2}}^{0} \\ & -i \lambda D_{1}^{(1)}\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \int d^{4} q \frac{-i}{q^{2}+m^{2}-i \epsilon} \frac{-i}{\left(p_{1}+p_{4}-q\right)^{2}+m^{2}-i \epsilon} \end{aligned}$

For the $D_{i}^{(2)}$ diagrams, the symmetry factor of 2 comes from the propagator starting and ending on the same internal vertex. For the $D_{s, t, u}^{(2)}$ diagrams, it comes from the 2 identical propagators connecting x_{1} and x_{2}.

Question 3: Vacuum Diagrams (30 points)

For a $\lambda \phi^{4}$ theory, consider the quantity

$$
Z_{0}=\langle 0| \mathrm{T} e^{-i \int_{\infty}^{\infty} d t H_{I}}|0\rangle
$$

where the expectation is evaluated in the free theorem. We also assume the free theory vacuum $|0\rangle$ is properly normalized, i.e. $\langle 0 \mid 0\rangle=1$.
(a) Consider

$$
W_{0}=\log Z_{0}
$$

Show that W_{0} can be written in a form

$$
W_{0}=\mathrm{cst}-i \epsilon V T
$$

where cst is a constant independent of the spacetime volume, ϵ is the energy difference between the full and free theories, and $V T$ is the total spacetime volume.
Method 1
We can write the path-integral as a ratio of matrix elements:

$$
Z_{0}=\langle 0| \mathrm{T} e^{-i \int d t H_{I}}|0\rangle=\frac{\int D \phi e^{i\left(S_{0}+S_{I}\right)}}{\int D \phi e^{i S_{0}}}=\frac{\langle\phi=0, \infty \mid \phi=0,-\infty\rangle_{\Omega}}{\langle\phi=0, \infty \mid \phi=0,-\infty\rangle_{0}}
$$

We first compute the numerator by inserting complete sets of eigenstates of H, at very early and late times. We further take $H \rightarrow H(1-i \epsilon)$ to make the expression convergent.

$$
\begin{aligned}
\langle\phi=0, \infty \mid \phi=0, T / 2\rangle_{\Omega} & =\lim _{T \rightarrow \infty} \sum_{n, m}\langle\phi=0, \infty \mid n, T / 2\rangle\langle n, T / 2 \mid m,-T / 2\rangle\langle m,-T / 2 \mid \phi=0,-T / 2\rangle_{\Omega} \\
& =\lim _{T \rightarrow \infty} \sum_{n, m}\langle\phi=0, \infty \mid n, T / 2\rangle e^{-i E_{m}(1-i \epsilon) T} \delta_{n, m}\langle m,-T / 2 \mid \phi=0,-T / 2\rangle_{\Omega}
\end{aligned}
$$

For very large T, the dominant contribution to this sum is that with lowest E_{m}, i.e. vacuum E_{Ω}. Hence,

$$
\langle\phi=0, \infty \mid \phi=0, T / 2\rangle_{\Omega}=\lim _{T \rightarrow \infty} \Psi_{\Omega}[\phi=0] \Psi_{\Omega}^{*}[\phi=0] e^{-i E_{\Omega} T}
$$

where $\Psi_{\Omega}[\phi=0]$ measures the ground state overlap of the $\phi=0$ state.
By the same procedure, we have

$$
\langle\phi=0, \infty \mid \phi=0, T / 2\rangle_{0}=\lim _{T \rightarrow \infty} \Psi_{0}[\phi=0] \Psi_{0}^{*}[\phi=0] e^{-i E_{0} T}
$$

Putting both pieces together, and using that for a perturbation $E_{\Omega}-E_{0} \ll 1$,

$$
W_{0}=\log Z_{0}=\log \frac{\left|\Psi_{\Omega}[\phi=0]\right|^{2} e^{-i E_{\Omega} T}}{\left|\Psi_{0}[\phi=0]\right|^{2} e^{-i E_{0} T}} \approx \operatorname{cst}-i\left(E_{\Omega}-E_{0}\right) T
$$

This is of the desired form, where we identify $\epsilon=\left(E_{\Omega}-E_{0}\right) / V$. It is implied that $T \rightarrow \infty$.
Method 2
Alternatively, we can compute this directly by expanding in eigenstates of the full Hamiltonian:

$$
\begin{aligned}
Z_{0} & =\langle 0| \mathrm{T} e^{-i \int d t H_{I}}|0\rangle=\lim _{T \rightarrow \infty}\langle 0| e^{i H_{0} T} e^{-i H T}|0\rangle=\lim _{T \rightarrow \infty} e^{i E_{0} T}\langle 0| e^{-i H T}|0\rangle \\
& =\lim _{T \rightarrow \infty} e^{i E_{0} T} \sum_{n}\langle 0| e^{-i H(1-i \epsilon) T}|n\rangle\langle n \mid 0\rangle=e^{i\left(E_{0}-E_{\Omega}\right) T}|\langle\Omega \mid 0\rangle|^{2}
\end{aligned}
$$

As in Method 1, we take $H \rightarrow H(1-i \epsilon)$ to make the expression convergent. For very large T, the dominant contribution to this sum is that with lowest E_{m}, i.e. the vacuum E_{Ω}.
For a perturbation $E_{\Omega}-E_{0} \ll 1$, so we have

$$
W_{0}=\log Z_{0} \approx \log |\langle\Omega \mid 0\rangle|^{2}-i\left(E_{\Omega}-E_{0}\right) T
$$

Again, we identify $\epsilon=\left(E_{\Omega}-E_{0}\right) / V$.
(b) The Feynman diagrams in the perturbative expansion of Z_{0} have no external lines, and are often called vacuum diagrams/bubbles. We thus say that Z_{0} is obtained by summing over vacuum diagrams. Show that W_{0} is the sum of connected vacuum diagrams.
Let $\left\{V_{i}\right\}$ be the set of connected vacuum diagram contributions (including symmetry factors), and $\left\{\tilde{V}_{I}\right\rangle$ be the set of all vacuum diagram contributions.

Then, a general diagram \tilde{V}_{I} consists of $n_{i}^{I} V_{i}$ sub-diagrams, for each $V_{i} \in\left\{V_{i}\right\}$. In particular, we have explicitly

$$
\tilde{V}_{I}=\frac{1}{S_{I}} \prod_{i}\left(V_{i}\right)^{n_{i}^{I}}=\prod_{i} \frac{1}{n_{i}^{I!}!}\left(V_{i}\right)^{n_{i}^{I}}
$$

Note that the expressions V_{i} already contain symmetry factors with associated with exchanging internal elements of subdiagrams. Therefore, the symmetry factor S_{I} above comes only from exchanging identical connected subdiagrams, of which there are n_{i}^{I} of type V_{i}. Hence $S_{I}=\prod_{i} n_{i}^{I}$!.

The full vacuum contribution comes from summing over all possible topologically distinct diagrams \tilde{V}_{I}. By the previous discussion, equivalently we may sum over all sets $\left\{n_{i}\right\}$:

$$
Z_{0}=\sum_{\left\{n_{i}\right\}} \tilde{V}_{I}=\sum_{\left\{n_{i}\right\}} \prod_{i} \frac{1}{n_{i}!}\left(V_{i}\right)^{n_{i}}=\prod_{i} \sum_{n_{i}=0}^{\infty} \frac{1}{n_{i}!}\left(V_{i}\right)^{n_{i}}=\prod_{i} e^{V_{i}}=e^{\sum_{i} V_{i}}
$$

Since $Z_{0}=e^{W_{0}}$, we recover $W_{0}=\sum_{i} V_{i}$ as desired, the sum of all connected vacuum diagrams.
(c) Write down the expression for ϵ to order $\mathcal{O}\left(\lambda^{2}\right)$, in either coordinate or momentum space. We first write down all the connected vacuum diagrams to order $\mathcal{O}\left(\lambda^{2}\right)$, using $\int d^{4} x=V T$.

Order	Diagram	S	Expressions
λ^{1}	$V_{1}^{(1)}$	2^{3}	$-i \lambda V T G_{F}^{0}(0)^{2}$ $-i \lambda\left(\int d^{4} q \frac{-i}{q^{2}+m^{2}-i \epsilon}\right)^{2}$
λ^{2}	$V_{2}^{(2)}$	2^{4}	$(-i \lambda)^{2} V T G_{F}^{0}(0)^{2} \int d^{4} z G_{F}^{0}(z)^{2}$
λ^{2}	$V_{3}^{(2)}$	$2 \times 4!$	$(-i \lambda)^{2}\left(\int d^{4} q \frac{-i}{q^{2}+m^{2}-i \epsilon}\right)^{2} \int d^{4} q\left(\frac{-i}{q^{2}+m^{2}-i \epsilon}\right)^{2}$
$(-i \lambda)^{2} V T \int d^{4} z G_{F}^{0}(z)^{4}$			

The symmetry factor of $V_{1}^{(1)}$ has 2^{2} from propagators starting and ending on the same vertex, and another factor of 2 permuting the loops. The symmetry factor of $V_{2}^{(2)}$ has 2^{2} from propagators starting and ending on the same vertex, a factor of 2 permuting the identical vertices, and another factor of 2 due to the 2 identical propagators connecting the internal vertices. The symmetry factor of $V_{2}^{(2)}$ has a factor of 2 permuting the identical vertices, 4 ! from the 4 identical propagators connecting the internal vertices.

Hence, we have

$$
\begin{aligned}
\epsilon & =\frac{i}{V T}\left(V_{1}^{(1)}+V_{2}^{(2)}+V_{3}^{(2)}\right)+\mathcal{O}\left(\lambda^{3}\right) \\
& =\frac{\lambda}{8}\left(G_{F}^{0}(0)\right)^{2}-\frac{i \lambda^{2}}{16}\left(G_{F}^{0}(0)\right)^{2} \int d^{4} x\left(G_{F}^{0}(x)\right)^{2}-\frac{i \lambda^{2}}{48} \int d^{4} x\left(G_{F}^{0}(x)\right)^{4}+\mathcal{O}\left(\lambda^{3}\right)
\end{aligned}
$$

Question 4: General n-point Function (10 points)

Prove that in evaluating the n-point function $G_{n}\left(x_{1}, \ldots x_{n}\right)$, diagrams that contain factor(s) of vacuum diagrams all cancel. That is, G_{n} is obtained by summing over diagrams without any vacuum diagram factors. This stateement is true for any H_{I}, but it is enough to prove for the $\lambda \phi^{4}$ theory.
Method 1
We start with the expression

$$
G_{n}\left(x_{1}, \ldots, x_{n}\right)=\frac{\langle 0| \mathrm{T} \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) e^{-i \int d t H_{I}}|0\rangle}{\langle 0| \mathrm{T} e^{-i \int d t H_{I}}|0\rangle}
$$

The numerator can be expanded as:

$$
\langle 0| \mathrm{T} \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) e^{-i \int d t H_{I}}|0\rangle=\sum_{m=0}^{\infty} \frac{1}{m!}\left\langle\mathrm{T} \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\left(i \int d^{4} x L_{I}\right)^{m}\right\rangle
$$

Observe that bubble diagrams must come from contractions between the L_{I} 's themselves. We define $\langle\cdots\rangle_{\text {n.b. }}$ to be the contribution to a contraction from non-bubble diagrams. We can thus write the numerator as:

$$
\begin{aligned}
& \sum_{m=0}^{\infty} \frac{1}{m!} \sum_{k=0}^{m} \frac{m!}{k!(m-k)!}\left\langle\mathrm{T} \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\left(i \int d^{4} x L_{I}\right)^{m-k}\right\rangle_{\text {n.b. }}\left\langle\left(i \int d^{4} x L_{I}\right)^{k}\right\rangle \\
& =\sum_{k=0}^{\infty} \sum_{m=k}^{\infty} \frac{1}{k!(m-k)!}\left\langle\mathrm{T} \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\left(i \int d^{4} x L_{I}\right)^{m-k}\right\rangle_{\text {n.b. }}\left\langle\left(i \int d^{4} x L_{I}\right)^{k}\right\rangle \\
& =\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{k!m!}\left\langle\mathrm{T} \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\left(i \int d^{4} x L_{I}\right)^{m}\right\rangle_{\text {n.b. }}\left\langle\left(i \int d^{4} x L_{I}\right)^{k}\right\rangle \\
& =\sum_{k=0}^{\infty} \frac{1}{k!}\left\langle\left(i \int d^{4} x L_{I}\right)^{k}\right\rangle \times \sum_{m=0}^{\infty} \frac{1}{m!}\left\langle\mathrm{T} \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\left(i \int d^{4} x L_{I}\right)^{m}\right\rangle_{\text {n.b. }}
\end{aligned}
$$

In lines 2 and 3, all we have done is changing the summation indices (discrete change of variables). This allows us to factor out the vacuum contribution, which we do in line 4 . The first factor is precisely the denominator of the Gell-Mann Low formula, thus

$$
G_{n}\left(x_{1}, \ldots x_{n}\right)=\left\langle\mathrm{T} \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\left(i \int d^{4} x L_{I}\right)^{m}\right\rangle_{\text {n.b. }}
$$

That is, the n-point function is obtained by summing over diagrams without any vacuum bubbles, as desired.

Method 2

Again, we start with the Gell-Mann Low formula. The idea is to factor the numerator into a sum of diagrams with no vacuum bubbles, times a factor containing all the vacuum-bubble dependence.

Let $\left\{V_{i}\right\}$ represent the connected vacuum diagram contributions (including symmetry factors), as in Problem 3(b). Further, let $\left\{D_{i}\right\}$ represent diagrams (including symmetry factors) contributing to the numerator in the Gell-Mann Low formula, that contain no vacuum bubbles.

For any diagram D_{i}, the sum of all diagrams contributing to the numerator which contain D_{i} as a subdiagram is precisely $D_{i} \prod_{j} V^{j}$. This follows from the argument in $3(\mathrm{a})$, and that all symmetry factors
are accounted for-there are no additional symmetry factors between the D_{i} and V_{j} 's. Furthermore, every contribution to the numerator must contain some D_{i} as a sub-diagram, therefore the numerator is

$$
\langle 0| \mathrm{T} \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) e^{-i \int d t H_{I}}|0\rangle=\sum_{i} \prod_{j} e^{V_{j}} D_{i}=Z_{0} \sum_{i} D_{i}
$$

where in the second equality we use from Problem 3(b) that $Z_{0}=\prod_{i} e^{V_{i}}$. Therefore,

$$
G_{n}\left(x_{1}, \ldots, x_{n}\right)=\frac{Z_{0} \sum_{i} D_{i}}{Z_{0}}=\sum_{i} D_{i}
$$

MIT OpenCourseWare
https://ocw.mit.edu

8.323 Relativistic Quantum Field Theory I

Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

