
8.323 Problem Set 6 Solutions

March 21, 2023

Question 1: Particle Production by an External Source, Continued (10 points)
Consider again Problem 2 of Problem Set 4. Introduce

Z[J ] =

∫
Dϕei

∫
d4xL, Z0 = Z[J = 0] =

∫
Dϕei

∫
d4xL0

for the Lagrangian:

L = −1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 + J(x)ϕ = L0 + J(x)ϕ

We can show that, with an appropriate iϵ prescription,

⟨0,+∞|0.−∞⟩ = Z[J ]

Z0

Use this to find the probability of no particle production

P0 = |⟨0,+∞|0,−∞⟩|2

by directly evaluating the path integral. You should reproduce your answer in 2(h) of Problem Set 4.
We compute:

Z[J ] =

∫
Dϕei

∫
d4x(L0+Jϕ)

=

∫
Dϕ exp

[
− i

2

∫
d̄4p

(
ϕ†(p)(p2 +m2 − iϵ)ϕ(p)− J†(p)ϕ(p)− J(p)ϕ†(p)

)]
= Z0 exp

[
i

2

∫
d̄4p

|J(p)|2

p2 +m2 − iϵ

]
In the last line, we complete the square and perform a linear shift of ϕ, ϕ†. Therefore,

P0 =

∣∣∣∣Z[J ]

Z[0]

∣∣∣∣2 = exp

[
i

∫
d̄4p|J(p)|2 Im

1

p2 +m2 − iϵ

]
= exp

[
−π

∫
d̄4p|J(p)|2δ(p2 +m2)

]
= exp

[
−π

∫
d̄4p|J(p)|2 1

2ωp
(δ(p0 − ωp) + δ(p0 + ωp))

]
= exp

[
−π

∫
d̄3p

2π

(
|J(ωp,p)|2 + |J(−ωp,p)|2

)]
= exp

[
−
∫

d̄3p

2ωp
|J(p)|2

]
= e−λ
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In the line 1, we use that a− a∗ = 2iIm(a). In line 2, we use the identity

lim
ϵ→0+

1

x− iϵ
= PV

(
1

x

)
+ iπδ(x)

where PV is the Cauchy principal value. Line 3 uses the identity from Problem Set 1 that

δ(p2 +m2) =
1

2ωp
(δ(p0 − ωp) + δ(p0 + ωp))

In line 4 we perform the p0 integral. Finally, in line 5 we use the invariance of the
∫
d̄3p under p → −p,

along with J(−p) = J∗(p) to show that the second term is equal to the first.
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Question 2: Connected Diagrams (30 points)
Consider the λϕ4 theory discussed in lecture, with interaction Hamiltonian

HI =
λ

4!

∫
d3xϕ4(x)

(a) List all connected diagrams for

⟨0|Tϕ(x1)ϕ(x2)e−i
∫∞
−∞ dtHI |0⟩

to order O(λ2), and give the symmetry factor for each diagram. For diagrams at orders O(λ0) and
O(λ1), write down their expressions in both coordinate and momentum space.

Order Diagram S Expressions

λ0 D
(0)
1 1 G0

F (x1 − x2)

(2π)4δ(4)(p1 − p2)
−i

p21+m2−iϵ

λ1 D
(1)
1 2 −λ

∫
d4zG0

F (x1 − z)G0
F (x2 − z)G0

F (0)

−iλ(2π)4δ(4)(p1 − p2)
−i

p21+m2−iϵ
−i

p22+m2−iϵ

∫
d̄4q −i

q2+m2−iϵ

λ2 D
(2)
1 2× 2 (−iλ)2

∫
d4z1d

4z2G
0
F (x1 − z1)G

0
F (x2 − z2)G

0
F (z1 − z2)G

0
F (0)

2

(−iλ)2D
(0)
1 (p1, p2)

−i
p21+m2−iϵ

−i
p22+m2−iϵ

(∫
d̄4q −i

q2+m2−iϵ

)2

λ2 D
(2)
2 2× 2 (−iλ)2

∫
d4z1d

4z2G
0
F (x1 − z1)G

0
F (x2 − z2)G

0
F (z1 − z2)

2G0
F (0)

(−iλ)2D
(0)
1 (p1, p2)

−i
p22+m2−iϵ

∫
d̄4q

(
−i

q2+m2−iϵ

)2 ∫
d̄4q −i

q2+m2−iϵ

λ2 D
(2)
3 3! (−iλ)2

∫
d4z1d

4z2G
0
F (x1 − z1)G

0
F (x2 − z2)G

0
F (z1 − z2)

3

(−iλ)2D
(0)
1 (p1, p2)

−i
p22+m2−iϵ

∫
d̄4q1d̄

4q2
−i

q21+m2−iϵ
−i

q22+m2−iϵ
−i

(q1+q+q′)2+m2−iϵ

The symmetry factors for the order λ2 diagrams are obtained as follows. D
(2)
1 receives a factor of 2 from

each of the propagators starting and ending on the same point (x1 and x2). D
(2)
2 has one factor of 2

from the propagator starting and ending on the same point, and another factor of 2 from the 2 identical

propagators connecting x1 and x2. D
(2)
3 has 3! from the 3 identical propagators connecting x1 and x2.
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(b) List all connected diagrams of the four-point function

G4(x1, x2, x3, x4) = λΩ|Tϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)|Ω⟩

to order O(λ2), and choose 2 to write down their expressions in coordinate and momentum space.
Here we take all momenta to be ingoing, and use the shorthand G0

F (x− y) =: G0
x,y.

Order Diagram S Expressions

λ1 D
(0)
1 1 −iλ

∫
d4zG0

F (x1 − z)G0
F (x2 − z)G0

F (x3 − z)G0
F (x4 − z)

−iλ(2π)4δ(4)(
∑

i pi)
−i

p21+m2−iϵ
−i

p22+m2−iϵ
−i

p23+m2−iϵ
−i

p24+m2−iϵ

λ2
4∑

i=1
D

(2)
i 2 (−iλ)2

∫
d4z1d

4z2G
0
x1,z2G

0
z1,z2G

0
0,0G

0
x2,z1G

0
x3,z1G

0
x4,z1 +

4∑
i=2

(1 ↔ i)

−iλD
(1)
1 (p1, p2, p3, p4)

−i
p21+m2−iϵ

∫
d̄4q −i

q2+m2−iϵ
+

4∑
i=2

(1 ↔ i)

λ2 D
(2)
s 2 (−iλ)2

∫
d4z1d

4z2G
0
x1,z1G

0
x2,z1(G

0
z1,z2)

2G0
x3,z2G

0
x4,z2

−iλD
(1)
1 (p1, p2, p3, p4)

∫
d̄4q −i

q2+m2−iϵ
−i

(p1+p2−q)2+m2−iϵ

λ2 D
(2)
t 2 (−iλ)2

∫
d4z1d

4z2G
0
x1,z1G

0
x3,z1(G

0
z1,z2)

2G0
x2,z2G

0
x4,z2

−iλD
(1)
1 (p1, p2, p3, p4)

∫
d̄4q −i

q2+m2−iϵ
−i

(p1+p3−q)2+m2−iϵ

λ2 D
(2)
u 2 (−iλ)2

∫
d4z1d

4z2G
0
x1,z1G

0
x4,z1(G

0
z1,z2)

2G0
x2,z2G

0
x3,z2

−iλD
(1)
1 (p1, p2, p3, p4)

∫
d̄4q −i

q2+m2−iϵ
−i

(p1+p4−q)2+m2−iϵ

For the D
(2)
i diagrams, the symmetry factor of 2 comes from the propagator starting and ending on the

same internal vertex. For the D
(2)
s,t,u diagrams, it comes from the 2 identical propagators connecting x1

and x2.
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Question 3: Vacuum Diagrams (30 points)
For a λϕ4 theory, consider the quantity

Z0 = ⟨0|Te−i
∫∞
∞ dtHI |0⟩

where the expectation is evaluated in the free theorem. We also assume the free theory vacuum |0⟩ is
properly normalized, i.e. ⟨0|0⟩ = 1.

(a) Consider

W0 = logZ0

Show that W0 can be written in a form

W0 = cst− iϵV T

where cst is a constant independent of the spacetime volume, ϵ is the energy difference between the
full and free theories, and V T is the total spacetime volume.

Method 1
We can write the path-integral as a ratio of matrix elements:

Z0 = ⟨0|Te−i
∫
dtHI |0⟩ =

∫
Dϕei(S0+SI)∫

DϕeiS0
=

⟨ϕ = 0,∞|ϕ = 0,−∞⟩Ω
⟨ϕ = 0,∞|ϕ = 0,−∞⟩0

We first compute the numerator by inserting complete sets of eigenstates of H, at very early and late
times. We further take H → H(1− iϵ) to make the expression convergent.

⟨ϕ = 0,∞|ϕ = 0, T/2⟩Ω = lim
T→∞

∑
n,m

⟨ϕ = 0,∞|n, T/2⟩⟨n, T/2|m,−T/2⟩⟨m,−T/2|ϕ = 0,−T/2⟩Ω

= lim
T→∞

∑
n,m

⟨ϕ = 0,∞|n, T/2⟩e−iEm(1−iϵ)T δn,m⟨m,−T/2|ϕ = 0,−T/2⟩Ω

For very large T , the dominant contribution to this sum is that with lowest Em, i.e. vacuum EΩ. Hence,

⟨ϕ = 0,∞|ϕ = 0, T/2⟩Ω = lim
T→∞

ΨΩ[ϕ = 0]Ψ∗
Ω[ϕ = 0]e−iEΩT

where ΨΩ[ϕ = 0] measures the ground state overlap of the ϕ = 0 state.

By the same procedure, we have

⟨ϕ = 0,∞|ϕ = 0, T/2⟩0 = lim
T→∞

Ψ0[ϕ = 0]Ψ∗
0[ϕ = 0]e−iE0T

Putting both pieces together, and using that for a perturbation EΩ − E0 ≪ 1,

W0 = logZ0 = log
|ΨΩ[ϕ = 0]|2e−iEΩT

|Ψ0[ϕ = 0]|2e−iE0T
≈ cst− i(EΩ − E0)T

This is of the desired form, where we identify ϵ = (EΩ − E0)/V . It is implied that T → ∞.

Method 2
Alternatively, we can compute this directly by expanding in eigenstates of the full Hamiltonian:

Z0 = ⟨0|Te−i
∫
dtHI |0⟩ = lim

T→∞
⟨0|eiH0T e−iHT |0⟩ = lim

T→∞
eiE0T ⟨0|e−iHT |0⟩

= lim
T→∞

eiE0T
∑
n

⟨0|e−iH(1−iϵ)T |n⟩⟨n|0⟩ = ei(E0−EΩ)T |⟨Ω|0⟩|2
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As in Method 1, we take H → H(1 − iϵ) to make the expression convergent. For very large T , the
dominant contribution to this sum is that with lowest Em, i.e. the vacuum EΩ.
For a perturbation EΩ − E0 ≪ 1, so we have

W0 = logZ0 ≈ log |⟨Ω|0⟩|2 − i(EΩ − E0)T

Again, we identify ϵ = (EΩ − E0)/V .

(b) The Feynman diagrams in the perturbative expansion of Z0 have no external lines, and are often
called vacuum diagrams/bubbles. We thus say that Z0 is obtained by summing over vacuum diagrams.
Show that W0 is the sum of connected vacuum diagrams.

Let {Vi} be the set of connected vacuum diagram contributions (including symmetry factors), and {ṼI⟩
be the set of all vacuum diagram contributions.

Then, a general diagram ṼI consists of nI
i Vi sub-diagrams, for each Vi ∈ {Vi}. In particular, we have

explicitly

ṼI =
1

SI

∏
i

(Vi)
nI
i =

∏
i

1

nI
i !
(Vi)

nI
i

Note that the expressions Vi already contain symmetry factors with associated with exchanging internal
elements of subdiagrams. Therefore, the symmetry factor SI above comes only from exchanging identical
connected subdiagrams, of which there are nI

i of type Vi. Hence SI =
∏

i n
I
i !.

The full vacuum contribution comes from summing over all possible topologically distinct diagrams ṼI .
By the previous discussion, equivalently we may sum over all sets {ni}:

Z0 =
∑
{ni}

ṼI =
∑
{ni}

∏
i

1

ni!
(Vi)

ni =
∏
i

∞∑
ni=0

1

ni!
(Vi)

ni =
∏
i

eVi = e
∑

i Vi

Since Z0 = eW0 , we recover W0 =
∑

i Vi as desired, the sum of all connected vacuum diagrams.

(c) Write down the expression for ϵ to order O(λ2), in either coordinate or momentum space.
We first write down all the connected vacuum diagrams to order O(λ2), using

∫
d4x = V T .

Order Diagram S Expressions

λ1 V
(1)
1 23 −iλV TG0

F (0)
2

−iλ
(∫

d̄4q −i
q2+m2−iϵ

)2

λ2 V
(2)
2 24 (−iλ)2V TG0

F (0)
2
∫
d4zG0

F (z)
2

(−iλ)2
(∫

d̄4q −i
q2+m2−iϵ

)2 ∫
d̄4q

(
−i

q2+m2−iϵ

)2

λ2 V
(2)
3 2× 4! (−iλ)2V T

∫
d4zG0

F (z)
4

(−iλ)2
∫
d̄4q1d̄

4q2d̄
4q3

−i
q21+m2−iϵ

−i
q22+m2−iϵ

−i
q23+m2−iϵ

−i
(q1+q2+q3)2+m2−iϵ
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The symmetry factor of V
(1)
1 has 22 from propagators starting and ending on the same vertex, and another

factor of 2 permuting the loops. The symmetry factor of V
(2)
2 has 22 from propagators starting and ending

on the same vertex, a factor of 2 permuting the identical vertices, and another factor of 2 due to the 2

identical propagators connecting the internal vertices. The symmetry factor of V
(2)
2 has a factor of 2

permuting the identical vertices, 4! from the 4 identical propagators connecting the internal vertices.

Hence, we have

ϵ =
i

V T
(V

(1)
1 + V

(2)
2 + V

(2)
3 ) +O(λ3)

=
λ

8
(G0

F (0))
2 − iλ2

16
(G0

F (0))
2

∫
d4x(G0

F (x))
2 − iλ2

48

∫
d4x(G0

F (x))
4 +O(λ3)
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Question 4: General n-point Function (10 points)
Prove that in evaluating the n-point function Gn(x1, . . . xn), diagrams that contain factor(s) of vacuum
diagrams all cancel. That is, Gn is obtained by summing over diagrams without any vacuum diagram
factors. This stateement is true for any HI , but it is enough to prove for the λϕ4 theory.
Method 1
We start with the expression

Gn(x1, . . . , xn) =
⟨0|Tϕ(x1) · · ·ϕ(xn)e−i

∫
dtHI |0⟩

⟨0|Te−i
∫
dtHI |0⟩

The numerator can be expanded as:

⟨0|Tϕ(x1) · · ·ϕ(xn)e−i
∫
dtHI |0⟩ =

∞∑
m=0

1

m!

〈
Tϕ(x1) · · ·ϕ(xn)

(
i

∫
d4xLI

)m〉
Observe that bubble diagrams must come from contractions between the LI ’s themselves. We define
⟨· · · ⟩n.b. to be the contribution to a contraction from non-bubble diagrams. We can thus write the
numerator as:

∞∑
m=0

1

m!

m∑
k=0

m!

k!(m− k)!

〈
Tϕ(x1) · · ·ϕ(xn)

(
i

∫
d4xLI

)m−k
〉

n.b.

〈(
i

∫
d4xLI

)k
〉

=
∞∑
k=0

∞∑
m=k

1

k!(m− k)!

〈
Tϕ(x1) · · ·ϕ(xn)

(
i

∫
d4xLI

)m−k
〉

n.b.

〈(
i

∫
d4xLI

)k
〉

=
∞∑
k=0

∞∑
m=0

1

k!m!

〈
Tϕ(x1) · · ·ϕ(xn)

(
i

∫
d4xLI

)m〉
n.b.

〈(
i

∫
d4xLI

)k
〉

=
∞∑
k=0

1

k!

〈(
i

∫
d4xLI

)k
〉

×
∞∑

m=0

1

m!

〈
Tϕ(x1) · · ·ϕ(xn)

(
i

∫
d4xLI

)m〉
n.b.

In lines 2 and 3, all we have done is changing the summation indices (discrete change of variables). This
allows us to factor out the vacuum contribution, which we do in line 4. The first factor is precisely the
denominator of the Gell-Mann Low formula, thus

Gn(x1, . . . xn) =

〈
Tϕ(x1) · · ·ϕ(xn)

(
i

∫
d4xLI

)m〉
n.b.

That is, the n-point function is obtained by summing over diagrams without any vacuum bubbles, as
desired.

Method 2
Again, we start with the Gell-Mann Low formula. The idea is to factor the numerator into a sum of
diagrams with no vacuum bubbles, times a factor containing all the vacuum-bubble dependence.

Let {Vi} represent the connected vacuum diagram contributions (including symmetry factors), as in
Problem 3(b). Further, let {Di} represent diagrams (including symmetry factors) contributing to the
numerator in the Gell-Mann Low formula, that contain no vacuum bubbles.

For any diagram Di, the sum of all diagrams contributing to the numerator which contain Di as a
subdiagram is precisely Di

∏
j V

j . This follows from the argument in 3(a), and that all symmetry factors
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are accounted for–there are no additional symmetry factors between the Di and Vj ’s. Furthermore, every
contribution to the numerator must contain some Di as a sub-diagram, therefore the numerator is

⟨0|Tϕ(x1) · · ·ϕ(xn)e−i
∫
dtHI |0⟩ =

∑
i

∏
j

eVjDi = Z0

∑
i

Di

where in the second equality we use from Problem 3(b) that Z0 =
∏

i e
Vi . Therefore,

Gn(x1, . . . , xn) =
Z0

∑
iDi

Z0
=

∑
i

Di
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